A Hybrid Method of Two Dynamic Programming Algorithms for Counting Paths using Zero-suppressed Binary Decision Diagrams

Yusei Ariyoshi* Tomoya Doi* Yuta Fujioka* Takumi Iwasaki*
Keita Maeda* Toshiki Saitoh* Takumi Shiota* Naoya Taguchi* ${ }^{*}$

July 18, 2023

Abstract

In this study, we address the problems of counting paths in an undirected graph. We propose two dynamic programming algorithms using zero-suppressed binary decision diagrams (ZDDs). The first one is a frontier-based search. This method constructs a ZDD representing all paths between a pair of terminals, and it can be seen as dynamic programming on a path decomposition. We first compute a path decomposition from a given graph heuristically in our implementation. Then we construct the ZDD with respect to the path decomposition by adapting the constraints in the following four steps: We first construct a ZDD with the constraint of the number of edges, then apply a relaxation of the degree constraint to the ZDD, extract objects satisfying the degree constraint, and finally obtain the objective ZDD by adapting the connectivity constraint. The other method is based on an algorithm for finding a Hamiltonian path by dynamic programming. We extend it to the counting problems and use arrays of ZDDs to efficiently maintain the number of Hamiltonian paths for all induced subgraphs. To obtain the objective ZDDs, we apply the family algebraic operations on ZDDs for the structures. In this paper, we implement the two algorithms and compare the efficiency of these algorithms by computer experiments. We show that the frontier-based search algorithm is faster than the Hamiltonian paths dynamic programming algorithm for counting paths with a pair of terminals. It can solve 85 instances of the 100 benchmark instances. These algorithms are incomparable for the counting all paths problem, and our algorithms solve 43 instances of the 50 benchmark instances in total. For the second problem, our algorithm chooses one of the two algorithms from a given graph structure and then runs it to count the number of all paths.

1 Introduction

Problems definitions: We consider a simple undirected graph $G=(V, E)$ where V is a set of vertices and $E \subseteq V \times V$ is a set of edges. A sequence of vertices $\left(v_{1}, \cdots, v_{k}\right)$ is called a path if $v_{i} \neq v_{j}$ for any distinct $i, j \in\{1, \ldots k\}$ and each consecutive pair of two vertices is adjacent. For a path $\left(v_{1}, \cdots, v_{k}\right)$, the length of the path is $k-1$. We say the vertices v_{1} and v_{k} terminals of the path, and the path is called $v_{1}-v_{k}$ path. In this paper, we treat the following two problems.

Problem 1 (One pair) Given a graph $G=(V, E)$, a pair of two terminals (s, t), and an integer ℓ, count the number of $s-t$ paths with length at most ℓ.

Problem 2 (All pairs) Given a graph $G=(V, E)$ and an integer ℓ, count the number of paths with length at most ℓ.

[^0]Zero-suppressed binary decision diagrams(ZDDs): A zero-suppressed binary decision diagram, a ZDD for short, is a data structure for a family of sets. See the details of the definition of ZDDs in [4]. As the important features of a ZDD, it can be represented a family of sets compactly, and there are many efficient family algebraic operations on ZDDs. After constructing the ZDD, we can efficiently count the number of objects represented by the ZDD. Therefore, it is important to consider how to construct the ZDD. One of the methods is a frontier-based search which constructs a ZDD directly by node sharing and pruning using a state, and another method is to take the ZDD operations repeatedly.

This paper proposes two algorithms using ZDDs for the counting path problems. The first is based on the frontier-based search described in Section 2. The other is based on the dynamic programming algorithm for computing Hamiltonian paths in Section 3. In the second algorithm, we maintain the Hamiltonian paths by arrays of ZDDs and use ZDD operations to update the data structures. We discuss the advantage of these algorithms through experiments in Section 4.

2 Frontier-based search algorithm

This section presents an algorithm based on the frontier-based search, which is dynamic programming on path decompositions. To work the frontier-based search efficiently, finding a "good" path decomposition of an input graph G is important. However, computing an optimal path decomposition of G is known to be NP-hard [1]. Inoue and Minato have proposed a heuristic by beam search [2] to compute a "good" path decomposition. We implement the heuristic to obtain the path decomposition of G by adjusting the width of the beam.

After computing the path decomposition of G, we construct a ZDD representing all $s-t$ paths in G by frontier-based search. The frontier-based search constructs a ZDD representing all subgraphs satisfying some conditions in a top-down mannar [3]. The basic idea of our algorithm is the same as the known one. We apply two constraints, degree and connectivity constraints, to obtain $s-t$ paths. The degree constraint for $s-t$ paths is that both degrees of terminals s and t are one, and the degrees of the other vertices are zero or two. The connectivity constraint is that the subgraph is connected. It is well known that any subgraph of G satisfies the two conditions if and only if it is a $s-t$ path.

To apply these constraints, we employ a subsetting method by TdZdd ${ }^{1}$ which is a $\mathrm{C}++$ library to construct a ZDD in a top-down manner. For a ZDD Z and a constraint C, the subsetting method obtains a new ZDD by extracting the subgraphs satisfying the condition C from the subgraphs represented by Z. Our algorithm executes the subsetting four times to adapt the problems with length constraints and to compute the degree constraint efficiently. We implement the following subsetting steps.

1. Length constraint: the number of edges is at most ℓ. We only maintain the number of edges as a state and prune the search if the number of selected edges exceeds ℓ.
2. Relaxation of the degree constraint: the degrees of terminals are odd, and those of the other vertices are even. We maintain a bit vector as a state for a bag of the path decomposition, and it represents that the degrees of the vertices in the bag are odd or even. We prune the search if a terminal's degree is even or a vertex's degree except for terminals is odd.
3. Degree constraint: the degrees of terminals and the other vertices are one, zero, or two, respectively. An integer array represents the degrees of the vertices in a bag. We prune the search if the degree becomes larger than three.
4. Connectivity constraint: the subgraphs are connected. We maintain a set of paths by a mate array [3]. We prune the search if the subgraph contains a cycle.
[^1]
3 Counting Hamiltonian paths using ZDDs

Let $G=(V, E)$ be a graph. If a path contains all vertices in G, the path is called Hamiltonian. For a vertex $v \in V$, a neighbor set of v is $N(v)=\{u \mid(u, v) \in E\}$. For a subset X of vertices, a graph $G[X]=\left(X, E_{X}\right)$ is an induced subgraph where $E_{X}=\{(u, v) \mid u, v \in X,(u, v) \in E\}$. This section shows a dynamic programming algorithm for finding Hamiltonian paths, known as the algorithm for the traveling salesperson problem. We extend the algorithm to the counting problems and implement it by ZDDs.

For a given graph $G=(V, E)$, a subset X of vertices includes vertices s and t. We define a function $f(s, t, X)$ as the number of Hamiltonian paths from s to t in $G[X]$. The function $f(s, t, X)$ can be computed by the following recursive formula:

$$
f(s, t, X)= \begin{cases}\sum_{v \in N(t), v \in X,} f\left(s, v, X^{\prime}\right) & s, t \in X, \text { and }|X| \geq 3 \tag{1}\\ X^{\prime}=X \backslash\{t\} \\ 0 & (s, t) \in E(G) \text { and } X=\{s, t\} \\ 0 & \text { Otherwise }\end{cases}
$$

We can obtain the number of $s-t$ paths of length at most ℓ by

$$
\sum_{s, t \in X \text { and }|X|-1 \leq \ell} f(s, t, X)
$$

We use arrays of ZDDs to implement the above computation. For an array of ZDDs $Z_{s, t, \ell}$ with indices $\{0,1, \ldots, k\}$ and an integer $i \in\{0, \ldots, k\}$, each ZDD $Z_{s, t, \ell}[i]$ represents a family of vertex sets such that the size of each set X is $\ell+1$ and $G[X]$ includes a $s-t$ Hamiltonian path. For each vertex set X, the array $Z_{s, t, \ell}$ represents the number of $s-t$ Hamiltonian paths in $G[X]$ in unsigned binary. If $X \in Z_{s, t, \ell}[i], X$ has weight 2^{i}, and the sum of the weights for X is the number of $s-t$ Hamiltonian paths in $G[X]$, that is, $f(s, t, X)=\sum_{i \in\{0, \ldots, k\}, X \in Z_{s, t, \ell}[i]} 2^{i}$. Using the arrays of ZDDs, we can compute the number of $s-t$ paths with length at most ℓ by

$$
\sum_{i \in\{1, \ldots, \ell\}} \sum_{j \in\{0,1, \ldots, k\}}\left|Z_{s, t, i}[j]\right| \times 2^{j}
$$

To obtain the array $Z_{s, t, \ell}$, we use Equation (1) and the family algebraic operations on ZDDs. For a vertex $v \in N(t)$ and $\ell>2$, we first make an array $Z_{s, v, \ell-1}^{\prime}$ of ZDDs from $Z_{s, v, \ell-1}$ by extracting the families which do not conclude t and then by adding t for all sets of each family. Then, we summand $Z_{s, v, \ell-1}^{\prime}$ to $Z_{s, t, \ell}$ for each vertex $v \in N(t)$ using intersection and exclusive or operations on ZDDs.

4 Experiments

In order to ascertain the effectiveness of the two algorithms described in Sections 2 and 3, we execute them for benchmark instances provided by the AFSA ICGCA ${ }^{2}$: There are 100 instances for Problem 1 (one pair) and 50 instances for Problem 2 (all pairs). We denote the algorithms proposed in Section 2 by FBS and in Section 3 by HAMDP. We implement the algorithms by C ++ language, and use libraries TdZdd ${ }^{1}$ for FBS and SAPPOROBDD ${ }^{3}$ for HAMDP. We run the programs on a machine with Linux CentOS 7.9, an Intel Xeon CPU E5-2643 v4 ($3.40 \mathrm{GHz}, 24$ cores), and 256 GB memory. To match the competition evaluation environment, we set timeout to 10 minutes per instance, and use at most 12 cores and 64 GB of memory. In FBS, we compute a path decomposition of an input graph within 10 seconds.

[^2]

Figure 1: (a) 000.col with $\ell=40$ and (b) 018.col with $\ell=10$ for benchmark of Problem 2.

Table 1 shows experimental results for Problem 1 (one pair). FBS and HAMDP solved 85 and 63 instances from 100 instances, respectively. The instances solved by FBS have small pathwidth which reprsents the quality of the path decomposition. On the other hand, HAMDP solved the instances with the small length ℓ. All the problems which solved by HAMDP could solve by FBS, that is, we can say that FBS is better than HAMDP in this situation.

Table 2 shows experimental results for Problem 2 (all pairs). FBS and HAMDP solved 33 and 38 instances from 50 instances, respectively. It seems that the two algorithms are incomparable to solve these instances: for example, the instance 000 .col were solved by FBS but not solved by HAMDP, and 018.col were solved by HAMDP but not solved by FBS. FBS solved the instances with small pathwidth and FBS solved the instances with small length ℓ. From this observation, we execute one of the two algorithms from the length or the graph size to solve many instances for Problem 2. Combining the two algorithms, we can solve 43 instances for the benchmark.

References

[1] Stefan Arnborg, Derek G. Corneil, and Andrzej Proskurowski. Complexity of finding embeddings in a k-tree. SIAM Journal on Algebraic Discrete Methods, 8(2):277-284, 1987.
[2] Yuma Inoue and Shin-ichi Minato. Acceleration of zdd construction for subgraph enumeration via path-width optimization. TCS-TR-A-16-80. Hokkaido University, 2016.
[3] Jun Kawahara, Takeru Inoue, Hiroaki Iwashita, and Shin-ichi Minato. Frontier-based search for enumerating all constrained subgraphs with compressed representation. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, 100(9):1773-1784, 2017.
[4] Donald E Knuth. The art of computer programming, volume 4A: combinatorial algorithms, part 1. Pearson Education India, 2011.

| No. | $\|V\|$ | $E \mid$ | \|l| | \#paths | Pathwidth | FBS [s] | HAMDP [s] |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 000 | 100 | 177 | 13 | 4.9×10^{2} | 11 | 0 | 0 |
| 001 | 196 | 361 | 20 | 8.3×10^{4} | 14 | 9 | 10 |
| 002 | 196 | 361 | 39 | 4.6×10^{12} | 15 | 11 | timeout |
| 003 | 169 | 309 | 36 | 6.5×10^{11} | 14 | 11 | timeout |
| 004 | 225 | 417 | 25 | 1.2×10^{7} | 15 | 11 | 268 |
| 005 | 256 | 477 | 22 | 3.0×10^{5} | 10 | 0 | 13 |
| 006 | 256 | 477 | 19 | 8.0×10^{3} | 8 | 0 | 1 |
| 007 | 324 | 609 | 85 | - | 19 | timeout | timeout |
| 008 | 361 | 681 | 72 | - | 20 | timeout | timeout |
| 009 | 225 | 417 | 17 | 2.0×10^{4} | 13 | 5 | 1 |
| 010 | 196 | 361 | 52 | 4.7×10^{17} | 15 | 31 | timeout |
| 011 | 169 | 309 | 17 | 6.2×10^{4} | 18 | 11 | 3 |
| 012 | 225 | 417 | 56 | 1.8×10^{19} | 17 | 100 | timeout |
| 013 | 324 | 609 | 45 | 7.6×10^{14} | 19 | 16 | timeout |
| 014 | 289 | 541 | 64 | - | 18 | timeout | timeout |
| 015 | 361 | 681 | 47 | 3.8×10^{15} | 20 | 25 | timeout |
| 016 | 256 | 477 | 75 | - | 18 | timeout | timeout |
| 017 | 196 | 361 | 65 | 5.1×10^{21} | 15 | 78 | timeout |
| 018 | 289 | 541 | 24 | 2.4×10^{6} | 17 | 11 | 262 |
| 019 | 289 | 541 | 42 | 1.1×10^{14} | 18 | 44 | timeout |
| 020 | 72 | 617 | 7 | 1.7×10^{2} | 19 | 1 | 0 |
| 021 | 57 | 516 | 8 | 6.8×10^{5} | 19 | 4 | 2 |
| 022 | 95 | 862 | 11 | 6.2×10^{6} | 19 | 8 | 25 |
| 023 | 57 | 516 | 5 | 4.2×10^{1} | 19 | 1 | 0 |
| 024 | 76 | 689 | 9 | 2.0×10^{5} | 20 | 6 | 4 |
| 025 | 50 | 232 | 50 | 5.8×10^{26} | 15 | 21 | timeout |
| 026 | 45 | 187 | 45 | 8.6×10^{21} | 13 | 1 | timeout |
| 027 | 65 | 397 | 18 | 6.8×10^{13} | 13 | 4 | 591 |
| 028 | 65 | 397 | 14 | 4.0×10^{9} | 13 | 0 | 61 |
| 029 | 60 | 425 | 60 | 3.7×10^{41} | 17 | 424 | timeout |
| 030 | 95 | 862 | 14 | 6.6×10^{10} | 19 | 20 | 246 |
| 031 | 80 | 607 | 14 | 1.2×10^{10} | 16 | 3 | 135 |
| 032 | 75 | 532 | 11 | 1.4×10^{9} | 21 | 15 | 269 |
| 033 | 70 | 462 | 20 | 2.0×10^{16} | 15 | 15 | timeout |
| 034 | 72 | 617 | 13 | - | 24 | timeout | timeout |
| 035 | 54 | 462 | 10 | 1.5×10^{8} | 18 | 3 | 6 |
| 036 | 90 | 772 | 12 | 2.7×10^{7} | 18 | 3 | 32 |
| 037 | 76 | 689 | 15 | 2.0×10^{13} | 20 | 93 | 282 |
| 038 | 65 | 397 | 65 | 2.4×10^{41} | 16 | 71 | timeout |
| 039 | 60 | 425 | 15 | 1.6×10^{12} | 16 | 8 | 130 |
| 040 | 64 | 485 | 11 | 1.3×10^{10} | 23 | 52 | timeout |
| 041 | 75 | 532 | 14 | 2.8×10^{9} | 15 | 1 | 90 |
| 042 | 51 | 411 | 10 | 1.0×10^{8} | 17 | 1 | 6 |
| 043 | 64 | 485 | 15 | 4.6×10^{12} | 16 | 19 | 202 |
| 044 | 95 | 862 | 18 | - | 19 | timeout | timeout |
| 045 | 84 | 473 | 11 | 6.3×10^{5} | 15 | 0 | 5 |
| 046 | 91 | 557 | 11 | 2.8×10^{8} | 19 | 4 | 85 |
| 047 | 153 | 1239 | 12 | 8.9×10^{6} | 18 | 2 | 22 |
| 048 | 105 | 746 | 12 | 8.5×10^{6} | 17 | 1 | 15 |
| 049 | 76 | 689 | 6 | 3.5×10^{2} | 19 | 1 | 0 |

Table 1: Experimental results for Problem 1

| No. | \| V \| | $E \mid$ | \|l| | \#paths | Pathwidth | FBS [s] | HAMDP [s] |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 050 | 90 | 772 | 7 | 1.3×10^{4} | 19 | 1 | 0 |
| 051 | 60 | 337 | 13 | 8.4×10^{9} | 15 | 2 | 25 |
| 052 | 56 | 207 | 56 | 6.5×10^{24} | 13 | 4 | timeout |
| 053 | 70 | 326 | 16 | 2.0×10^{11} | 15 | 3 | timeout |
| 054 | 48 | 269 | 48 | 6.5×10^{28} | 17 | 73 | timeout |
| 055 | 90 | 420 | 16 | 2.8×10^{10} | 13 | 1 | 112 |
| 056 | 108 | 609 | 20 | 1.7×10^{15} | 16 | 12 | timeout |
| 057 | 95 | 862 | 13 | 1.2×10^{12} | 22 | 96 | 91 |
| 058 | 85 | 687 | 13 | 3.8×10^{11} | 20 | 24 | 70 |
| 059 | 144 | 1095 | 14 | 4.2×10^{9} | 19 | 5 | 107 |
| 060 | 135 | 960 | 12 | 1.5×10^{7} | 21 | 15 | 32 |
| 061 | 70 | 462 | 13 | 4.9×10^{10} | 17 | 4 | 31 |
| 062 | 60 | 337 | 60 | 1.9×10^{36} | 17 | 311 | timeout |
| 063 | 75 | 532 | 13 | 1.1×10^{11} | 18 | 10 | 48 |
| 064 | 77 | 396 | 18 | 5.8×10^{13} | 17 | 45 | timeout |
| 065 | 72 | 617 | 17 | - | 21 | timeout | timeout |
| 066 | 98 | 648 | 16 | 1.0×10^{12} | 16 | 4 | 269 |
| 067 | 171 | 1554 | 12 | - | 28 | timeout | timeout |
| 068 | 98 | 648 | 20 | 2.1×10^{16} | 16 | 24 | timeout |
| 069 | 108 | 609 | 16 | 1.8×10^{11} | 16 | 2 | 162 |
| 070 | 72 | 617 | 13 | 6.6×10^{11} | 20 | 28 | 68 |
| 071 | 68 | 549 | 68 | - | 21 | timeout | timeout |
| 072 | 68 | 549 | 68 | - | 19 | timeout | timeout |
| 073 | 126 | 834 | 14 | 1.8×10^{9} | 17 | 1 | 99 |
| 074 | 126 | 1082 | 20 | - | 20 | timeout | timeout |
| 075 | 19 | 169 | 4 | 4.3×10^{3} | 19 | 0 | 0 |
| 076 | 17 | 134 | 5 | 3.3×10^{4} | 17 | 0 | 0 |
| 077 | 19 | 169 | 5 | 6.0×10^{4} | 19 | 1 | 0 |
| 078 | 13 | 76 | 4 | 1.0×10^{3} | 13 | 0 | 0 |
| 079 | 19 | 169 | 3 | 2.9×10^{2} | 19 | 0 | 0 |
| 080 | 13 | 76 | 3 | 1.2×10^{2} | 13 | 0 | 0 |
| 081 | 16 | 118 | 16 | 2.1×10^{11} | 16 | 5 | 0 |
| 082 | 20 | 188 | 3 | 3.2×10^{2} | 20 | 0 | 0 |
| 083 | 20 | 188 | 5 | 7.7×10^{4} | 20 | 1 | 0 |
| 084 | 19 | 169 | 19 | 8.6×10^{14} | 19 | 165 | 3 |
| 085 | 754 | 895 | 61 | 1.0×10^{3} | 7 | 1 | 149 |
| 086 | 604 | 2268 | 17 | - | 31 | timeout | timeout |
| 087 | 960 | 2821 | 20 | - | 44 | timeout | timeout |
| 088 | 624 | 5298 | 17 | - | 120 | timeout | timeout |
| 089 | 631 | 2078 | 16 | - | 27 | timeout | timeout |
| 090 | 100 | 154 | 10 | 2.8×10^{1} | 8 | 0 | 0 |
| 091 | 86 | 134 | 14 | 2.5×10^{3} | 14 | 11 | 1 |
| 092 | 99 | 147 | 12 | 4.2×10^{1} | 8 | 0 | 0 |
| 093 | 98 | 154 | 12 | 1.4×10^{2} | 12 | 1 | 0 |
| 094 | 98 | 152 | 10 | 5.8×10^{1} | 11 | 0 | 0 |
| 095 | 98 | 145 | 13 | 8.9×10^{1} | 11 | 0 | 0 |
| 096 | 95 | 153 | 17 | 1.1×10^{5} | 15 | 11 | 18 |
| 097 | 100 | 158 | 13 | 6.0×10^{2} | 14 | 11 | 0 |
| 098 | 96 | 153 | 18 | 7.1×10^{4} | 14 | 10 | 28 |
| 099 | 99 | 155 | 19 | 4.6×10^{4} | 14 | 10 | 12 |

Table 1: Experimental results for Problem 1 (continue)

| No. | \|V| | $E \mid$ | \|l| | \#paths | Pathwidth | FBS [s] | HAMDP [s] |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 000 | 81 | 141 | 40 | 6.8×10^{14} | 10 | 516 | timeout |
| 001 | 64 | 109 | 35 | 3.0×10^{12} | 9 | 117 | timeout |
| 002 | 289 | 541 | 10 | 7.4×10^{6} | 20 | timeout | 5 |
| 003 | 225 | 417 | 31 | - | 17 | timeout | timeout |
| 004 | 100 | 177 | 13 | 1.8×10^{7} | 12 | 262 | 10 |
| 005 | 57 | 516 | 5 | 3.3×10^{7} | 19 | timeout | 1 |
| 006 | 44 | 225 | 7 | 4.0×10^{7} | 11 | 63 | 1 |
| 007 | 64 | 485 | 9 | 1.2×10^{11} | 16 | timeout | 53 |
| 008 | 64 | 485 | 64 | - | 23 | timeout | timeout |
| 009 | 56 | 369 | 12 | 1.2×10^{13} | 14 | timeout | 268 |
| 010 | 40 | 147 | 6 | 7.7×10^{5} | 10 | 28 | 0 |
| 011 | 55 | 282 | 6 | 8.8×10^{6} | 14 | 122 | 1 |
| 012 | 60 | 337 | 6 | 1.8×10^{7} | 15 | 198 | 1 |
| 013 | 35 | 112 | 13 | 2.0×10^{9} | 9 | 21 | 21 |
| 014 | 63 | 204 | 18 | 4.0×10^{12} | 10 | 199 | timeout |
| 015 | 144 | 1095 | 18 | - | 19 | timeout | timeout |
| 016 | 117 | 717 | 7 | 5.7×10^{8} | 20 | timeout | 29 |
| 017 | 60 | 337 | 13 | - | 15 | timeout | timeout |
| 018 | 64 | 485 | 10 | 1.1×10^{12} | 18 | timeout | 104 |
| 019 | 147 | 1481 | 8 | - | 27 | timeout | timeout |
| 020 | 45 | 64 | 6 | 3.9×10^{3} | 7 | 14 | 0 |
| 021 | 61 | 78 | 61 | 8.1×10^{6} | 6 | 37 | 15 |
| 022 | 67 | 83 | 67 | 1.2×10^{7} | 6 | 46 | 13 |
| 023 | 74 | 92 | 6 | 4.0×10^{3} | 7 | 50 | 0 |
| 024 | 73 | 95 | 73 | 3.6×10^{7} | 6 | 68 | 15 |
| 025 | 83 | 99 | 7 | 5.5×10^{3} | 6 | 83 | 0 |
| 026 | 110 | 146 | 9 | 3.5×10^{4} | 7 | 186 | 0 |
| 027 | 125 | 146 | 14 | 3.4×10^{4} | 7 | 240 | 0 |
| 028 | 138 | 151 | 17 | 3.0×10^{4} | 7 | 321 | 0 |
| 029 | 113 | 161 | 13 | 1.9×10^{6} | 9 | 234 | 3 |
| 030 | 145 | 186 | 15 | 6.8×10^{5} | 8 | 428 | 1 |
| 031 | 158 | 189 | 18 | 3.5×10^{5} | 6 | 549 | 1 |
| 032 | 318 | 758 | 11 | - | 12 | timeout | timeout |
| 033 | 172 | 381 | 9 | 1.8×10^{8} | 12 | timeout | 65 |
| 034 | 240 | 404 | 8 | 1.1×10^{8} | 13 | timeout | 69 |
| 035 | 201 | 434 | 6 | 2.1×10^{6} | 15 | timeout | 2 |
| 036 | 182 | 294 | 8 | 1.7×10^{7} | 11 | timeout | 14 |
| 037 | 11 | 47 | 11 | 7.8×10^{6} | 11 | 1 | 0 |
| 038 | 11 | 42 | 11 | 4.6×10^{6} | 9 | 1 | 0 |
| 039 | 39 | 86 | 39 | 2.7×10^{12} | 9 | 39 | timeout |
| 040 | 35 | 80 | 35 | 3.2×10^{11} | 8 | 23 | timeout |
| 041 | 94 | 139 | 7 | 6.4×10^{4} | 13 | 159 | 0 |
| 042 | 86 | 134 | 86 | - | 14 | timeout | timeout |
| 043 | 98 | 154 | 8 | 4.1×10^{5} | 15 | 264 | 1 |
| 044 | 98 | 152 | 7 | 8.6×10^{4} | 14 | 199 | 0 |
| 045 | 98 | 145 | 13 | 1.6×10^{7} | 14 | 289 | 35 |
| 046 | 95 | 153 | 10 | 2.2×10^{6} | 15 | 380 | 4 |
| 047 | 96 | 153 | 6 | 5.3×10^{4} | 14 | 216 | 0 |
| 048 | 99 | 155 | 7 | 1.5×10^{5} | 15 | 221 | 0 |
| 049 | 48 | 82 | 48 | 1.7×10^{10} | 6 | 25 | 55 |

Table 2: Experimental results for Problem 2

[^0]: *Kyushu Institute of Technology
 ${ }^{\dagger}$ Corresponding author (taguchi.naoya675@mail.kyutech.jp)

[^1]: ${ }^{1}$ https://github.com/kunisura/TdZdd

[^2]: ${ }^{2}$ https://afsa.jp/icgca/.
 ${ }^{3}$ https://github.com/Shin-ichi-Minato/SAPPOROBDD

