
Submission for International Competition on
Graph Counting Algorithms

Shou Ohba∗

July 4, 2023

∗Kyoto University

1

1 Introduction
We implemented a portfolio solver which uses the following algorithms.

1. Depth-First Search

2. Meet in the middle

3. Simpath[1]

3-a. default edge ordering
3-b. community-based edge ordering

The criteria for the use are as follows.

• For the instances whose maximum path length l is less than or equal
to 14, we run the algorithm 2.

• For the other instances, we run the algorithms 1, 3-a, and 3-b in par-
allel.

2 Depth-First Search
For instances that have few paths, a straightforward depth-first search (DFS)
is effective enough.

For all-pairs instances, for each vertex s, we run DFS starting from s and
enumerate simple paths. To avoid double-counting, we count paths whose
terminals are not less than s. Computations can be performed independently
for each s, so we can parallelize this algorithm easily.

We can improve this algorithm if the input graph has small neighborhood
diversity[2]. To introduce neighborhood diversity, we define the relation ∼nd

on V as follows:

u ∼nd v
def⇐⇒ N(u) \ {v} = N(v) \ {u},

where N(v) denotes the neighborhood of v ∈ V . This is an equivalence
relation in fact, and neighborhood diversity is defined as the size of the
quotient set V/∼nd.

We represent a not necessarily simple path P as the sequence of vertices
(P0, . . . , Pk).

Let P be a simple path and assume that there exist integers i, j (0 ≤
i < j ≤ k) which satisfy Pi ∼nd Pj. By swapping Pi and Pj, we obtain a
sequence P ′ = (P0, . . . , Pi−1, Pj, Pi+1, . . . , Pj−1, Pi, Pj+1, . . . , Pk). Then P ′ is

2

also a path because of the definition of ∼nd and the simplicity of P . This
means that vertices u and v are equivalent when counting simple paths if
they satisfy u ∼nd v.

Now we construct a new graph G′(V/∼nd, E
′), where the edge set E ′ is

defined as follows:

E ′ = {{[u], [v]} | ∃a ∈ [u], ∃b ∈ [v] s.t. {a, b} ∈ E}.

Note that G′ does not contain multi-edges, but may contain self-loops.
For a simple path P = (P0, . . . , Pk) on G, we defines [P] = ([P0], . . . , [Pk]).

[P] is a not necessarily simple path on G′. For a not necessarily simple path
Q on G′, the number of simple paths P on G which satisfies [P] = Q can be
expressed as follows:∏

[u]∈V/∼nd

W[u]
PCQ

[u]
=

∏
[u]∈V/∼nd

(
W[u](W[u] − 1) · · · (W[u] − CQ

[u] + 1)
)
,

where W[u] = |[u]| and CQ
[u] = |{i | Qi = [u]}|. Similarly, the number of

simple s−t paths P on G which satisfies [P] = Q can be expressed as follows:
0 if s /∈ Q0 ∨ t /∈ Qk

W[s]−2PCQ
[s]

−2 ·
∏

[u]∈(V/∼nd)\{[s]}
W[u]

PCQ
[u]

if s, t ∈ Q0 = Qk

W[s]−1PCQ
[s]

−1 · W[t]−1PCQ
[t]
−1 ·

∏
[u]∈(V/∼nd)\{[s],[t]}

W[u]
PCQ

[u]
otherwise

From the above, simple paths on G can be counted by counting not neces-
sarily simple paths on G′ with appropriate weights.

3 Meet in the middle
We split a simple path P = (P0, P1, . . . , Pk) by the midpoint x = P⌈k/2⌉. We
enumerate the first half simple paths (x = P⌈k/2⌉, P⌈k/2⌉−1, . . . , P0) and the
second half simple paths (x = P⌈k/2⌉, P⌈k/2⌉+1, . . . , Pk) independently. Finally,
we count the pairs of paths which form a simple path by connecting at x.

3.1 all-pairs
We fix the midpoint x ∈ V and the length k (1 ≤ k ≤ l). Here l is the
maximum length of paths. Let Px,i be the set of simple paths with length i
which starts from x ∈ V .

3

We combine simple paths L = (x = L0, L1, . . . , L⌈k/2⌉) ∈ Px,⌈k/2⌉ and
R = (x = R0, R1, . . . , R⌊k/2⌋) ∈ Px,⌊k/2⌋ to obtain a new path
P = (L⌈k/2⌉, L⌈k/2⌉−1, . . . , L1, x, R1, R2, . . . , R⌊k/2⌋). P is simple if and only if
V (L) ∩ V (R) = {x} holds. Here V (S) denotes the set of vertices appearing
in S.

For a path L ∈ Px,⌈k/2⌉, let Cx,k(L) be the number of paths R ∈ Px,⌊k/2⌋
which satisfies V (L) ∩ V (R) = {x}. From the inclusion-exclusion principle,
Cx,k(L) can be computed as follows:

Cx,k(L) =
∑

S⊆(V (L)\{x})

(−1)|S| · |{R ∈ Px,⌊k/2⌋ | (V (R) \ {x}) ⊇ S}|.

Computing Dx,k(S) = |{R ∈ Px,⌊k/2⌋ | (V (R) \ {x}) ⊇ S}| naively is
costly, so we precompute Dx,k(S) for all S ⊆ V . This can be done in the
following way:

1. Make an empty hash map Dx,k.

2. For each R ∈ Px,⌊k/2⌋, do the following:

(a) For each S ⊆ V (R) \ {x}, do the following:
• If S is not contained in Dx,k as a key, update Dx,k(S) as

Dx,k(S)← 1.
• Otherwise, update Dx,k(S) as Dx,k(S)← Dx,k(S) + 1.

This precomputation can be done in (expected) O(|Px,⌊k/2⌋|k2⌊k/2⌋) time.
Using the precomputing result, we can calculate all Cx,k(L) in (expected)
O(|Px,⌈k/2⌉|k2⌈k/2⌉) time.

We must not distinguish between paths that differ only in direction. Thus,

the answer can be written as 1

2

∑
x∈V

l∑
k=1

∑
L∈Px,⌈k/2⌉

Cx,k(L).

Furthermore, from the discussion in the previous section, the answer can

also be expressed as 1

2

∑
[x]∈V/∼nd

W[x]

l∑
k=1

∑
L∈Px,⌈k/2⌉

Cx,k(L).

Computations can be performed independently for each x, so we can
parallelize this algorithm easily.

4

3.2 one-pair
We fix the midpoint x ∈ V and the length of paths k (1 ≤ k ≤ l). Let Lx,i

and Rx,i be the set of simple x−s and x−t paths with length i, respectively.
By applying the inclusion-exclusion principle in the same way as for all-

pairs instances, the answer is expressed as follows:

∑
x∈V

l∑
k=1

∑
L∈Lx,⌈k/2⌉

∑
S⊆V (L)\{x}

(−1)|S| · |{R ∈ Rx,⌊k/2⌋ | (V (R) \ {x}) ⊇ S}|.

We can improve this algorithm for instances with small neighborhood
diversity as well as for all-pairs instances.

4 Simpath[1]
Simpath is an algorithm to enumerate simple paths using Zero-suppressed
Binary Decision Diagrams (ZDDs)[3]. We will not discuss Simpath in detail
here but rather describe the ordering of edges.

4.1 default order
If the input is already organized, the default ordering can be effective enough.

4.2 community-based order
Networks are sometimes shaped in such a way that they sparsely connect
between dense communities. Thus, we try the following edge ordering:

1. By applying Girvan-Newman algorithm[4], divide the vertex set to
some communities. Girvan-Newman algorithm makes several candi-
date partitions, thus we need to choose one of them. This time we
adopted the one with the highest modularity[5].

2. Relabel the vertices so that vertices in the same community have con-
secutive labels. Communities are ordered in preorder of a DFS tree
of the graph obtained by contracting communities. For one-pair in-
stances, we choose the community that contains the terminal s as a
root of the DFS tree. For all-pairs instances, we choose at random.

3. Order edges {u, v} in the ascending order of (min(u, v),max(u, v)).

5

For example, Figure 1 shows the input graph of one-pair/052.col. The
first step outputs the division shown in Figure 2, and the second step outputs
the labeling of vertices shown in Figure 3.

1 2
3

4
5 6

7

89

10

11 12

13

14

1516
17

18 19
20

21
22 23

24

25
26

27

28

29 303132

3334
35

36 37
38 39

40

41

42
43 44

45
46

47

48
49

50

51

525354
55 56

Figure 1: Input

1 2
3

4
5 6

7

89

10

11 12

13

14

1516
17

18 19
20

21
22 23

24

25
26

27

28

29 303132

3334
35

36 37
38 39

40

41

42
43 44

45
46

47

48
49

50

51

525354
55 56

Figure 2: Division

1 2
3

4

5

6
7 8

9
101112

13

14

15
16

17 18
19

20
2122

23

24

2526
27
28

2930

31

32 33
34

35
3637 38

39

40

414243
44

45
46

4748

49
50

51

52

53
54 55

56

Figure 3: Relabelling

References
[1] Donald E. Knuth. The Art of Computer Programming, Volume 4, Fascicle

1: Bitwise Tricks & Techniques; Binary Decision Diagrams. Addison-
Wesley Professional, 12th edition, 2009.

[2] Michael Lampis. Algorithmic meta-theorems for restrictions of treewidth.
In Proceedings of the 18th Annual European Conference on Algorithms:
Part I, ESA’10, page 549–560, Berlin, Heidelberg, 2010. Springer-Verlag.

[3] Shin-ichi Minato. Zero-suppressed bdds for set manipulation in combina-
torial problems. In Proceedings of the 30th International Design Automa-
tion Conference, DAC ’93, page 272–277, New York, NY, USA, 1993.
Association for Computing Machinery.

[4] M. Girvan and M. E. J. Newman. Community structure in social and
biological networks. Proceedings of the National Academy of Sciences,
99(12):7821–7826, 2002.

[5] M. E. J. Newman and M. Girvan. Finding and evaluating community
structure in networks. Phys. Rev. E, 69:026113, Feb 2004.

6

