
Counting Paths in Graphs

1 Homomorphisms for Counting Paths

Lovász was one of the first to recognize the close relationship between the num-
ber of subgraphs #Sub(H,G) and the number of homomorphisms #Hom(H,G).
Radu Curticapean, Holger Dell, and Dániel Marx formalized these insights un-
der the name ’Graph Motif Parameters’ [1]. Furthermore, they showed that

#Sub(H,G) =
∑
ρ

(−1)|V (H)|−|V (Hρ)| ·
∏

B∈ρ(|B| − 1)!

#Aut(H)
·#Hom(Hρ, G) (1)

holds. Here, we sum over all partitions ρ of the vertex set of H, such that the
quotient graph Hρ is from the set of homomorphic images of H. Essentially one
can think of the homomorphic images as the graphs we obtain by contracting
non neighboring vertices. Regardless of the partitions, the number of automor-
phisms of a path remains 2. In our implementation, we generate the set of
homomorphic images for k + 1 by considering all possibilities of extending the
graphs in the homomorphic images for k. One can prove that the number of
such homomorphic images for Pk is exactly the Bell number B(k− 1), which is
the number of ways we can partition k − 1 distinguishable objects. Moreover,
one can prove that for any other connected graph the number of homomorphic
images is ≤ B(k − 1), so in some sense, the problem to count paths is more
challenging compared to other subgraphs. We use the library ’nauty’ to check
for graph isomorphisms and the library ’homlib’ to compute graph homomor-
phisms. It turned out that homlib didn’t work correctly for large graphs. We
fixed some issues in the dynamic programming routine of homlib, but further
testing is needed to verify homlib for larger graphs. We achieve a runtime of

O((0.792(k−1)
ln(k))k−1 · n0.174k+O(1)).

2 Paths for fixed Terminals

Let s and t be the fixed terminal vertices, and let k be the upper bound on the
number of vertices in an s-t path we want to count. We apply the following
reduction rules:

• delete all vertices v where distS[v] + distT [v] ≥ k

• delete all vertices which are not in the same connected component as s
and t

Now all remaining vertices are contained in some s-t path on ≤ k vertices.
Compute dp[mask][v] where mask is the set of vertices used in the path so far
ending with vertex v. Afterwards, we need to calculate the transition of our
dynamic programming approach by considering all possibilities to extend the
mask. This leads to a runtime of O(2n · n2).

References

[1] Radu Curticapean, Holger Dell, and Dániel Marx. Homomorphisms are a
good basis for counting small subgraphs. In Proceedings of the 49th Annual
ACM SIGACT Symposium on Theory of Computing, STOC 2017, pages
210–223, New York, NY, USA, 2017. ACM.

