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Abstract

In this study, we address the problems of counting paths in an undirected graph. We propose
two dynamic programming algorithms using zero-suppressed binary decision diagrams (ZDDs).
The first one is a frontier-based search. This method constructs a ZDD representing all paths
between a pair of terminals, and it can be seen as dynamic programming on a path decomposition.
We first compute a path decomposition from a given graph heuristically in our implementation.
Then we construct the ZDD with respect to the path decomposition by adapting the constraints
in the following four steps: We first construct a ZDD with the constraint of the number of edges,
then apply a relaxation of the degree constraint to the ZDD, extract objects satisfying the degree
constraint, and finally obtain the objective ZDD by adapting the connectivity constraint. The
other method is based on an algorithm for finding a Hamiltonian path by dynamic programming.
We extend it to the counting problems and use arrays of ZDDs to efficiently maintain the number
of Hamiltonian paths for all induced subgraphs. To obtain the objective ZDDs, we apply the
family algebraic operations on ZDDs for the structures. In this paper, we implement the two
algorithms and compare the efficiency of these algorithms by computer experiments. We show
that the frontier-based search algorithm is faster than the Hamiltonian paths dynamic program-
ming algorithm for counting paths with a pair of terminals. It can solve 85 instances of the 100
benchmark instances. These algorithms are incomparable for the counting all paths problem, and
our algorithms solve 43 instances of the 50 benchmark instances in total. For the second problem,
our algorithm chooses one of the two algorithms from a given graph structure and then runs it to
count the number of all paths.

1 Introduction

Problems definitions: We consider a simple undirected graph G = (V,E) where V is a set of
vertices and E ⊆ V × V is a set of edges. A sequence of vertices (v1, · · · , vk) is called a path if vi ̸= vj
for any distinct i, j ∈ {1, . . . k} and each consecutive pair of two vertices is adjacent. For a path
(v1, · · · , vk), the length of the path is k − 1. We say the vertices v1 and vk terminals of the path, and
the path is called v1 − vk path. In this paper, we treat the following two problems.

Problem 1 (One pair) Given a graph G = (V,E), a pair of two terminals (s, t), and an integer ℓ,
count the number of s− t paths with length at most ℓ.

Problem 2 (All pairs) Given a graph G = (V,E) and an integer ℓ, count the number of paths with
length at most ℓ.
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Zero-suppressed binary decision diagrams(ZDDs): A zero-suppressed binary decision diagram,
a ZDD for short, is a data structure for a family of sets. See the details of the definition of ZDDs in [4].
As the important features of a ZDD, it can be represented a family of sets compactly, and there are
many efficient family algebraic operations on ZDDs. After constructing the ZDD, we can efficiently
count the number of objects represented by the ZDD. Therefore, it is important to consider how to
construct the ZDD. One of the methods is a frontier-based search which constructs a ZDD directly by
node sharing and pruning using a state, and another method is to take the ZDD operations repeatedly.

This paper proposes two algorithms using ZDDs for the counting path problems. The first is based
on the frontier-based search described in Section 2. The other is based on the dynamic programming
algorithm for computing Hamiltonian paths in Section 3. In the second algorithm, we maintain the
Hamiltonian paths by arrays of ZDDs and use ZDD operations to update the data structures. We
discuss the advantage of these algorithms through experiments in Section 4.

2 Frontier-based search algorithm

This section presents an algorithm based on the frontier-based search, which is dynamic programming
on path decompositions. To work the frontier-based search efficiently, finding a “good” path decompo-
sition of an input graph G is important. However, computing an optimal path decomposition of G is
known to be NP-hard [1]. Inoue and Minato have proposed a heuristic by beam search [2] to compute
a “good” path decomposition. We implement the heuristic to obtain the path decomposition of G by
adjusting the width of the beam.

After computing the path decomposition of G, we construct a ZDD representing all s − t paths
in G by frontier-based search. The frontier-based search constructs a ZDD representing all subgraphs
satisfying some conditions in a top-down mannar [3]. The basic idea of our algorithm is the same as
the known one. We apply two constraints, degree and connectivity constraints, to obtain s− t paths.
The degree constraint for s− t paths is that both degrees of terminals s and t are one, and the degrees
of the other vertices are zero or two. The connectivity constraint is that the subgraph is connected.
It is well known that any subgraph of G satisfies the two conditions if and only if it is a s− t path.

To apply these constraints, we employ a subsetting method by TdZdd1 which is a C++ library to
construct a ZDD in a top-down manner. For a ZDD Z and a constraint C, the subsetting method
obtains a new ZDD by extracting the subgraphs satisfying the condition C from the subgraphs rep-
resented by Z. Our algorithm executes the subsetting four times to adapt the problems with length
constraints and to compute the degree constraint efficiently. We implement the following subsetting
steps.

1. Length constraint: the number of edges is at most ℓ. We only maintain the number of edges as
a state and prune the search if the number of selected edges exceeds ℓ.

2. Relaxation of the degree constraint: the degrees of terminals are odd, and those of the other
vertices are even. We maintain a bit vector as a state for a bag of the path decomposition, and
it represents that the degrees of the vertices in the bag are odd or even. We prune the search if
a terminal’s degree is even or a vertex’s degree except for terminals is odd.

3. Degree constraint: the degrees of terminals and the other vertices are one, zero, or two, respec-
tively. An integer array represents the degrees of the vertices in a bag. We prune the search if
the degree becomes larger than three.

4. Connectivity constraint: the subgraphs are connected. We maintain a set of paths by a mate
array [3]. We prune the search if the subgraph contains a cycle.

1https://github.com/kunisura/TdZdd
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3 Counting Hamiltonian paths using ZDDs

Let G = (V,E) be a graph. If a path contains all vertices in G, the path is called Hamiltonian. For
a vertex v ∈ V , a neighbor set of v is N(v) = {u | (u, v) ∈ E}. For a subset X of vertices, a graph
G[X] = (X,EX) is an induced subgraph where EX = {(u, v) | u, v ∈ X, (u, v) ∈ E}. This section
shows a dynamic programming algorithm for finding Hamiltonian paths, known as the algorithm for
the traveling salesperson problem. We extend the algorithm to the counting problems and implement
it by ZDDs.

For a given graph G = (V,E), a subset X of vertices includes vertices s and t. We define a function
f(s, t,X) as the number of Hamiltonian paths from s to t in G[X]. The function f(s, t,X) can be
computed by the following recursive formula:

f(s, t,X) =



∑
v∈N(t),v∈X,
X′=X\{t}

f(s, v,X ′) s, t ∈ X, and |X| ≥ 3

1 (s, t) ∈ E(G) and X = {s, t},
0 Otherwise

(1)

We can obtain the number of s− t paths of length at most ℓ by∑
s,t∈X and |X|−1≤ℓ

f(s, t,X).

We use arrays of ZDDs to implement the above computation. For an array of ZDDs Zs,t,ℓ with
indices {0, 1, . . . , k} and an integer i ∈ {0, . . . , k}, each ZDD Zs,t,ℓ[i] represents a family of vertex sets
such that the size of each set X is ℓ+ 1 and G[X] includes a s− t Hamiltonian path. For each vertex
set X, the array Zs,t,ℓ represents the number of s− t Hamiltonian paths in G[X] in unsigned binary.
If X ∈ Zs,t,ℓ[i], X has weight 2i, and the sum of the weights for X is the number of s− t Hamiltonian
paths in G[X], that is, f(s, t,X) =

∑
i∈{0,...,k},X∈Zs,t,ℓ[i]

2i. Using the arrays of ZDDs, we can compute
the number of s− t paths with length at most ℓ by∑

i∈{1,...,ℓ}

∑
j∈{0,1,...,k}

|Zs,t,i[j]| × 2j .

To obtain the array Zs,t,ℓ, we use Equation (1) and the family algebraic operations on ZDDs. For
a vertex v ∈ N(t) and ℓ > 2, we first make an array Z ′

s,v,ℓ−1 of ZDDs from Zs,v,ℓ−1 by extracting the
families which do not conclude t and then by adding t for all sets of each family. Then, we summand
Z ′
s,v,ℓ−1 to Zs,t,ℓ for each vertex v ∈ N(t) using intersection and exclusive or operations on ZDDs.

4 Experiments

In order to ascertain the effectiveness of the two algorithms described in Sections 2 and 3, we execute
them for benchmark instances provided by the AFSA ICGCA2: There are 100 instances for Problem 1
(one pair) and 50 instances for Problem 2 (all pairs). We denote the algorithms proposed in Section 2
by FBS and in Section 3 by HAMDP. We implement the algorithms by C++ language, and use
libraries TdZdd1 for FBS and SAPPOROBDD3 for HAMDP. We run the programs on a machine
with Linux CentOS 7.9, an Intel Xeon CPU E5-2643 v4 (3.40 GHz, 24 cores), and 256 GB memory.
To match the competition evaluation environment, we set timeout to 10 minutes per instance, and use
at most 12 cores and 64 GB of memory. In FBS, we compute a path decomposition of an input graph
within 10 seconds.

2https://afsa.jp/icgca/.
3https://github.com/Shin-ichi-Minato/SAPPOROBDD
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(a) (b)

Figure 1: (a) 000.col with ℓ = 40 and (b) 018.col with ℓ = 10 for benchmark of Problem 2.

Table 1 shows experimental results for Problem 1 (one pair). FBS and HAMDP solved 85 and 63
instances from 100 instances, respectively. The instances solved by FBS have small pathwidth which
reprsents the quality of the path decomposition. On the other hand, HAMDP solved the instances
with the small length ℓ. All the problems which solved by HAMDP could solve by FBS, that is, we
can say that FBS is better than HAMDP in this situation.

Table 2 shows experimental results for Problem 2 (all pairs). FBS and HAMDP solved 33 and 38
instances from 50 instances, respectively. It seems that the two algorithms are incomparable to solve
these instances: for example, the instance 000.col were solved by FBS but not solved by HAMDP,
and 018.col were solved by HAMDP but not solved by FBS. FBS solved the instances with small
pathwidth and FBS solved the instances with small length ℓ. From this observation, we execute one of
the two algorithms from the length or the graph size to solve many instances for Problem 2. Combining
the two algorithms, we can solve 43 instances for the benchmark.
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No. |V | |E| |l| #paths Pathwidth FBS [s] HAMDP [s]

000 100 177 13 4.9× 102 11 0 0
001 196 361 20 8.3× 104 14 9 10
002 196 361 39 4.6× 1012 15 11 timeout
003 169 309 36 6.5× 1011 14 11 timeout
004 225 417 25 1.2× 107 15 11 268
005 256 477 22 3.0× 105 10 0 13
006 256 477 19 8.0× 103 8 0 1
007 324 609 85 - 19 timeout timeout
008 361 681 72 - 20 timeout timeout
009 225 417 17 2.0× 104 13 5 1
010 196 361 52 4.7× 1017 15 31 timeout
011 169 309 17 6.2× 104 18 11 3
012 225 417 56 1.8× 1019 17 100 timeout
013 324 609 45 7.6× 1014 19 16 timeout
014 289 541 64 - 18 timeout timeout
015 361 681 47 3.8× 1015 20 25 timeout
016 256 477 75 - 18 timeout timeout
017 196 361 65 5.1× 1021 15 78 timeout
018 289 541 24 2.4× 106 17 11 262
019 289 541 42 1.1× 1014 18 44 timeout
020 72 617 7 1.7× 102 19 1 0
021 57 516 8 6.8× 105 19 4 2
022 95 862 11 6.2× 106 19 8 25
023 57 516 5 4.2× 101 19 1 0
024 76 689 9 2.0× 105 20 6 4
025 50 232 50 5.8× 1026 15 21 timeout
026 45 187 45 8.6× 1021 13 1 timeout
027 65 397 18 6.8× 1013 13 4 591
028 65 397 14 4.0× 109 13 0 61
029 60 425 60 3.7× 1041 17 424 timeout
030 95 862 14 6.6× 1010 19 20 246
031 80 607 14 1.2× 1010 16 3 135
032 75 532 11 1.4× 109 21 15 269
033 70 462 20 2.0× 1016 15 15 timeout
034 72 617 13 - 24 timeout timeout
035 54 462 10 1.5× 108 18 3 6
036 90 772 12 2.7× 107 18 3 32
037 76 689 15 2.0× 1013 20 93 282
038 65 397 65 2.4× 1041 16 71 timeout
039 60 425 15 1.6× 1012 16 8 130
040 64 485 11 1.3× 1010 23 52 timeout
041 75 532 14 2.8× 109 15 1 90
042 51 411 10 1.0× 108 17 1 6
043 64 485 15 4.6× 1012 16 19 202
044 95 862 18 - 19 timeout timeout
045 84 473 11 6.3× 105 15 0 5
046 91 557 11 2.8× 108 19 4 85
047 153 1239 12 8.9× 106 18 2 22
048 105 746 12 8.5× 106 17 1 15
049 76 689 6 3.5× 102 19 1 0

Table 1: Experimental results for Problem 1
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No. |V | |E| |l| #paths Pathwidth FBS [s] HAMDP [s]

050 90 772 7 1.3× 104 19 1 0
051 60 337 13 8.4× 109 15 2 25
052 56 207 56 6.5× 1024 13 4 timeout
053 70 326 16 2.0× 1011 15 3 timeout
054 48 269 48 6.5× 1028 17 73 timeout
055 90 420 16 2.8× 1010 13 1 112
056 108 609 20 1.7× 1015 16 12 timeout
057 95 862 13 1.2× 1012 22 96 91
058 85 687 13 3.8× 1011 20 24 70
059 144 1095 14 4.2× 109 19 5 107
060 135 960 12 1.5× 107 21 15 32
061 70 462 13 4.9× 1010 17 4 31
062 60 337 60 1.9× 1036 17 311 timeout
063 75 532 13 1.1× 1011 18 10 48
064 77 396 18 5.8× 1013 17 45 timeout
065 72 617 17 - 21 timeout timeout
066 98 648 16 1.0× 1012 16 4 269
067 171 1554 12 - 28 timeout timeout
068 98 648 20 2.1× 1016 16 24 timeout
069 108 609 16 1.8× 1011 16 2 162
070 72 617 13 6.6× 1011 20 28 68
071 68 549 68 - 21 timeout timeout
072 68 549 68 - 19 timeout timeout
073 126 834 14 1.8× 109 17 1 99
074 126 1082 20 - 20 timeout timeout
075 19 169 4 4.3× 103 19 0 0
076 17 134 5 3.3× 104 17 0 0
077 19 169 5 6.0× 104 19 1 0
078 13 76 4 1.0× 103 13 0 0
079 19 169 3 2.9× 102 19 0 0
080 13 76 3 1.2× 102 13 0 0
081 16 118 16 2.1× 1011 16 5 0
082 20 188 3 3.2× 102 20 0 0
083 20 188 5 7.7× 104 20 1 0
084 19 169 19 8.6× 1014 19 165 3
085 754 895 61 1.0× 103 7 1 149
086 604 2268 17 - 31 timeout timeout
087 960 2821 20 - 44 timeout timeout
088 624 5298 17 - 120 timeout timeout
089 631 2078 16 - 27 timeout timeout
090 100 154 10 2.8× 101 8 0 0
091 86 134 14 2.5× 103 14 11 1
092 99 147 12 4.2× 101 8 0 0
093 98 154 12 1.4× 102 12 1 0
094 98 152 10 5.8× 101 11 0 0
095 98 145 13 8.9× 101 11 0 0
096 95 153 17 1.1× 105 15 11 18
097 100 158 13 6.0× 102 14 11 0
098 96 153 18 7.1× 104 14 10 28
099 99 155 19 4.6× 104 14 10 12

Table 1: Experimental results for Problem 1 (continue)
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No. |V | |E| |l| #paths Pathwidth FBS [s] HAMDP [s]

000 81 141 40 6.8× 1014 10 516 timeout
001 64 109 35 3.0× 1012 9 117 timeout
002 289 541 10 7.4× 106 20 timeout 5
003 225 417 31 - 17 timeout timeout
004 100 177 13 1.8× 107 12 262 10
005 57 516 5 3.3× 107 19 timeout 1
006 44 225 7 4.0× 107 11 63 1
007 64 485 9 1.2× 1011 16 timeout 53
008 64 485 64 - 23 timeout timeout
009 56 369 12 1.2× 1013 14 timeout 268
010 40 147 6 7.7× 105 10 28 0
011 55 282 6 8.8× 106 14 122 1
012 60 337 6 1.8× 107 15 198 1
013 35 112 13 2.0× 109 9 21 21
014 63 204 18 4.0× 1012 10 199 timeout
015 144 1095 18 - 19 timeout timeout
016 117 717 7 5.7× 108 20 timeout 29
017 60 337 13 - 15 timeout timeout
018 64 485 10 1.1× 1012 18 timeout 104
019 147 1481 8 - 27 timeout timeout
020 45 64 6 3.9× 103 7 14 0
021 61 78 61 8.1× 106 6 37 15
022 67 83 67 1.2× 107 6 46 13
023 74 92 6 4.0× 103 7 50 0
024 73 95 73 3.6× 107 6 68 15
025 83 99 7 5.5× 103 6 83 0
026 110 146 9 3.5× 104 7 186 0
027 125 146 14 3.4× 104 7 240 0
028 138 151 17 3.0× 104 7 321 0
029 113 161 13 1.9× 106 9 234 3
030 145 186 15 6.8× 105 8 428 1
031 158 189 18 3.5× 105 6 549 1
032 318 758 11 - 12 timeout timeout
033 172 381 9 1.8× 108 12 timeout 65
034 240 404 8 1.1× 108 13 timeout 69
035 201 434 6 2.1× 106 15 timeout 2
036 182 294 8 1.7× 107 11 timeout 14
037 11 47 11 7.8× 106 11 1 0
038 11 42 11 4.6× 106 9 1 0
039 39 86 39 2.7× 1012 9 39 timeout
040 35 80 35 3.2× 1011 8 23 timeout
041 94 139 7 6.4× 104 13 159 0
042 86 134 86 - 14 timeout timeout
043 98 154 8 4.1× 105 15 264 1
044 98 152 7 8.6× 104 14 199 0
045 98 145 13 1.6× 107 14 289 35
046 95 153 10 2.2× 106 15 380 4
047 96 153 6 5.3× 104 14 216 0
048 99 155 7 1.5× 105 15 221 0
049 48 82 48 1.7× 1010 6 25 55

Table 2: Experimental results for Problem 2
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