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Abstract

We present the new and improved version of Too Long Didn’t Count (TLDC), a solver
for the length-limited path counting problem in directed and undirected graphs. Our solver
is a portfolio of multiple approaches that are chosen based on problem parameters that we
can exploit. The different approaches exploit pathwidth, treewidth, maximum path length,
and the difference between the longest and shortest possible path, respectively.

1 Introduction

Informally, the one pair length limited path counting problem (PCS) is the following: Given a
possibly directed graph G, a source vertex s, a target vertex t, and a maximum length ℓ, count
all simple paths in G from s to t of length less than ℓ.

PCS is #P-complete [24], and thus, highly challenging to solve efficiently. Nevertheless, PCS
is relevant for problems such as network reliability [20]. Therefore, algorithms that are efficient,
to the extent possible, are of interest.

In this paper, we briefly describe the techniques that we used in our solver TLDC, submitted
to the International Competition on Graph Counting Algorithms 2024 (ICGCA), to solve PCS-
instances. A cleaned up version of the source code will be made available at https://github.
com/raki123/TL-DC in the coming weeks.

TLDC is based on our submission of the same name to ICGCA 2023. While we observed
significant speedups compared to the previous edition, the basic workflow remains similar and
the improvements are mostly due to refinements of existing ideas.

The basic workflow of TLDC is as follows:

1. Simplification/Preprocessing

2. Parameter computation

3. Choice of strategy from portfolio

4. Search using chosen strategy

In the following, we first go over some preliminaries in Section 2, before going over the different
steps of TLDC’s workflow in Sections 3.1 to 3.4, respectively, highlighting changes compared to
last year. Next, we compare this year’s version of TLDC to last year’s version empirically, in
Section 4. Following up, we discuss the results and the impact of different ideas, in Section 5.
Finally, we outline further opportunities to enable fast graph counting, in Section 6.

For a short summary, we recommend Section 5.
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2 Preliminaries

We start by introducing some necessary definitions

Definition 1 (Graph, Digraph). A directed graph G = (V,A) is a set of vertices V combined
with a set of arcs A ⊆ V × V \ {(v, v) | v ∈ V }. A graph is a directed graph (V,A) such that
(v, w) ∈ A iff (w, v) ∈ A for all v, w ∈ V . For graphs, we talk about edges {v, w} ∈ E (instead of
(v, w), (w, v) ∈ A).

For a graph G = (V,E) (resp. directed graph G = (V,A)), we write V (G) and E(G) (resp.
A(G)) for V and E (resp. A).

We are interested in simple paths in (directed) graphs.

Definition 2 (Path, Simple Path). Given a (directed) graph G, a path in G is a string v0, . . . , vn ∈
V ∗ such that for all 0 ≤ i < n it holds that (vi, vi+1) ∈ A(G). The length of such a path is defined
as n, i.e., the number of vertices in it minus one, and it starts at v0, ends at vn, and is a path
from v0 to vn. Such a path is simple if |{v0, . . . , vn}| = n+1, i.e., there are no repeated vertices.

Formally, (directed) PCS is defined as the following problem:

Given: A (directed) graph G, terminals s, t ∈ V (G), s ̸= t, and a maximum length ℓ ≥ 0.
Compute: The number of simple paths from s to t in G whose length is less or equal to ℓ.

To simplify the rest of the paper, we introduce some notation. For a (di)graph G and v, v′ ∈
V (G), we define

N+(v) = {w ∈ V (G) | (v, w) ∈ A(G)}
N−(v) = {w ∈ V (G) | (w, v) ∈ A(G)}
N(v) = N+(v) ∪N−(v)

G \ v = (V (G) \ {V }, A(G) \ ({(v, w) ∈ A(G)} ∪ {(w, v) ∈ A(G)})
G \ (v, v′) = (V (G), A(G) \ {(v, v′)})

SP (v, w,G) = min
(v,v1,...,vn−1,w) is a path in G

n

3 TLDC’s Workflow

3.1 Preparation

Before we start solving PCS instances, we first try to simplify them as much as possible, to
reduce unnecessary overhead. Here, we assume that instances are well formed, meaning that
s ̸= t and SP (s, t,G) ≤ ℓ. Otherwise, we know the result is zero.

Given an instance (G, s, t, ℓ), we apply the following reductions:

Reduction 1 (Isolated Vertices). If v ∈ V (G) such that one of |N(v)| ≤ 1, N−(v) = ∅, or
N+(v) = ∅ holds, replace (G, s, t, ℓ) by (G \ v, s′, t′, ℓ′), where s′ is the unique neighbor of s, if
v = s, and s′ = s, otherwise, t′ is the unique neighbor of t, if v = t and t′ = t, otherwise, and
ℓ′ = ℓ− 1, if v = s or v = t, and ℓ′ = ℓ, otherwise.

Intuitively, we can never use isolated vertices (apart from start and goal) in a path, since we
may visit them but can never leave them or the other way around. For start and goal, there is
only one option for the vertex in the path next to them, so we can use this vertex as the new
start or goal and decrease the maximum length by one.

Reduction 2 (Unreachable Vertices). If v ∈ V (G) such that SP (s, v,G) + SP (v, t,G) > ℓ,
replace (G, s, t, ℓ) by (G \ v, s, t, ℓ).
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Unreachable vertices can never occur in a path from s to t of length less or equal to ℓ.

Reduction 3 (Unusable Arcs/Edges). If (v, w) ∈ A(G) such that SP (s, v,G\w)+1+SP (w, t,G\
v) > ℓ, replace (G, s, t, ℓ) by (G \ (v, w), s, t, ℓ).

If we cannot use an arc in a path from s to t of length less or equal to ℓ, we can remove it
without changing the result of the instance. For undirected graphs, we only apply this reduction if
we would remove both (v, w) and (w, v). Practically, we only perform this reduction on (di)graphs
with less than 10000 vertices, since computing the distance in the (di)graph with one vertex
removed is too expensive to do for each vertex.1

Reduction 4 (Start-Goal Arcs/Edges). If (s, t) ∈ A(G), replace (G, s, t, ℓ) by (G \ (s, t) \
(t, s), s, t, ℓ) and add one to the solution.

Arcs/Edges directly from start to goal can be removed, reducing the solution exactly by one.

Reduction 5 (Forwarder Vertices). If |V (G)| − 1 ≤ ℓ, v ∈ V (G), v ̸= s, v ̸= t,

A∗ = {(x, y) | (x, v), (v, y) ∈ A(G), x ̸= y}

such that A∗ ∩ A(G) = ∅, and one of |N(v)| = 2, |N−(v)| = 1 or N+(v) = 1, then replace
(G, s, t, ℓ) by (G′, s, t, ℓ), where

V (G′) = V (G) \ {v}

and
A(G′) = A(G \ v) ∪A∗.

Intuitively, if path includes a forwarder vertex, neither as the start nor as the goal vertex,
then at least one of its adjacent vertices in the path is predetermined. Thus, we can remove the
forwarder vertex, and add the “forwarded” connections.

There are two things to be careful about here. Firstly, this clearly changes the length of some
paths, since the forwarder vertex is not used anymore. Therefore, we can only apply this reduction
if we are not length limited. Secondly, if one of the “forwarded” connections already exists, we
reduce the number of paths, because some previously different paths are now represented by the
same path.

Both of these problems can be alleviated by assigning arcs/edges a weight, that denotes how
many paths of a certain length the arc/edge represents. In fact, we do exactly that (and lift most
other reductions to (di)graphs with such arc/edge weights), if the chosen search strategy allows.

Reduction 6 (Dominators/Cut Vertices). If v, w ∈ V (G) such that every path from s to w visits
v, replace (G, s, t, ℓ) by (G \ (w, v), s, t, ℓ). If every path from w to t visits v, replace (G, s, t, ℓ) by
(G \ (v, w), s, t, ℓ).

In this case, we know in which order the vertices can occur on a path from s to t, if they
occur. Therefore, we can remove arcs that point into the wrong direction since any path from s
to t they occur on could not be simple, as it would have to use the v twice.

This reduction can help us in two ways. Firstly, it can happen that v occurs on any path from
s and to t, with other end w. In this case, w cannot occur on any simple path from s to t, and
we can remove it. This is the only way we use this reduction for undirected graphs. Secondly, it
can remove the arcs in one direction thus decreasing the instance size. For directed graphs, this
is also used.

Practically, this reduction is the one with the largest differences between directed and undi-
rected graphs. Namely, detecting cut vertices (a.k.a. articulation points) can be detected easily

1It is likely that there is a more efficient way to check whether this reduction can be applied though.
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in undirected graphs via a simple modification of the connected component algorithm for undi-
rected graphs [9]. For directed graphs on the other hand, efficient algorithms to find dominators
are much more complicated. There are nevertheless algorithms that can solve the problem in
almost linear time [16, 6]. We would like to thank Georgiadis et al. for providing us with their
implementations from [6, 7], which we use in our solver to compute dominators.

Reduction 7 (Position Determined Vertices). If v ∈ V (G) such that SP (s, v,G)+SP (v, t,G) >
ℓ − k, for a small number k, replace (G, s, t, ℓ) by (G \ v, s, t, ℓ) and increase the solution by the
number of paths that use v.

Clearly, if we count all paths from s to t that visit v, we can remove v from G and solve
the remaining problem independently on a smaller graph. Unfortunately, counting all paths that
visit v may be as hard as counting all paths. Therefore, we only apply this reduction, when the
minimum distance of a path that uses v is close to ℓ. In this case, we assume that the number of
vertices that can be on a path including v is much smaller than |V (G)|, and counting becomes
significantly easier. We perform this reduction only for k = 2. To count the paths, we use our
DFS-based solver since it performs well, when the difference between SP (s, t,G) and ℓ is low.

3.2 Search Strategies

We briefly go over the search strategies that we used. Since none of them are completely novel
(i.e., were present already at last years edition of ICGCA), we do not explain them in detail but go
over some details that we consider to be especially relevant for performance or are non-standard.
For all approaches we have a directed and undirected version. However, they only differ by taking
into account whether the input graph is directed or not.

3.2.1 Pathwidth Search

Frontier based search, where the edge order is generated in such a manner that the path width
is small, is probably the most typical approach to path counting problems [12, 14, 13].

There are a few ways in which our implementation differs from the standard algorithm. Firstly,
we added pruning based on the ℓ and the current length of the partial paths. This stayed the
same compared to last year.

Secondly, our algorithm is multithreaded, which is the case in some other implementations
but not all. We noticed that in last years edition the speedup we gained from parallelism was
not as large as one might expect. We identified the insertions into the cache as the bottleneck
here. This caused problems because (1) we locked every time we inserted into a cache and (2)
all threads had to wait, when the cache had to be increased in size and rehashed.

We addressed (1) and partially (2) by having k caches (currently 1 per thread) and inserting
partial solutions, whose hash value modulo k was i, into the i-th cache and locking only this
particular cache. To further address (2), we additionally reserved enough space in the next
caches for twice the amount of entries that we had in the current caches. This guarantees that
resizing and rehashing never occurs.

Last year, we additionally applied a form of unit propagation, where we only cached partial
solutions if the next edge could both be taken and skipped. Since we noticed that this was only
helpful in the old solver due to the cache insertion bottleneck, we removed this feature in the
current version.

One new feature in the current version is that we assign vertices an index between 0 and k,
where k is the pathwidth, globally instead of per arc/edge to be eliminated. This comes at the
cost of always having k+1 entries in the partial solution array, however, this is negligible since the
hard parts of the search are expected to have k+1 entries anyway. On the upside it allows us to
only replace the entry for completely processed vertices by the no-edge token, instead of iterating
over the whole partial solution array, to adjust the partial solution to be correctly indexed.
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Last years TLDC also used caching modulo isomorphisms based on nauty [18]. While this is
still supported by this years version (although untested), we chose not to include it in this years
version since (1) there was no benefit on the public instances and (2) it is very hard to properly
include this strategy in a portfolio approach.

3.2.2 Treewidth Search

Also frontier based search with joins, i.e., based on an edge ordering generated from a branch-
or tree decomposition, are neither new to ICGCA nor to research in general [25]2. We apply the
same techniques that we apply for pathwidth search here.

Additionally, this years version has significantly improved performance since we fixed a per-
formance bug. Last year, after merging two partial path arrays we first multiplied their solution
counts before checking whether we can actually use the result. This is clearly unnecessary and
can be very expensive when the instance is length limited. This years edition first performs the
check and then multiplies the solution counts.

3.2.3 DFS Search

To the best of our knowledge, we first introduced what we refer to as DFS Search in last years
edition of ICGCA. We recall the basic idea.

Starting from s, we traverse all outgoing arcs/edges, mark s as visited, and decrement ℓ.
Then, given the new start s′ we run a shortest path algorithm, and mark all vertices v such that
SP (s, v,G)+SP (v, t,G\s) > ℓ 3 as visited since we can never visit them anymore. Furthermore,
we mark all vertices that would be removed by Reduction 6 as visited. For the directed graphs,
we treat the graph as undirected here. Then, we put the obtained subinstance into a cache
combining counts on cache hits. This is repeated until we processed all subinstances.

Compared to last year, we made the following changes: On the one hand, we removed the
optimization of counting all remaining paths if we could treat the rest of the graph as a directed
acyclic graph because the distance to the goal was equal to ℓ. On a lot of instances this apparently
actually hurt our performance instead of benefiting it.

On the other hand, we do not use nauty anymore to compute a canonical representation
of the remaining graph4. Instead, we draw inspiration from [19] and only partially canonize
the remaining graph by swapping visited flags of twin vertices such that the vertices with the
smallest label are visited first. Here, two vertices v, w ∈ V (G) are twins for our purposes, if
N−(v) \ {w} = N−(w) \ {v}, N+(v) \ {w} = N+(w) \ {v} and (v, w) ∈ A(G) iff (w, v) ∈ A(G).
On instances with many twins, this performs much better than complete canonization using
nauty.

The latter change additionally enables use to include DFS search into our portfolio in a much
easier manner, by computing the relevant graph parameters not on the original graph but the
one, where all twins are collapsed into one vertex.

3.2.4 Meet in the Middle (MITM) Search

MITM search was introduced by Ohba in the solver diodrm [19] submitted to last years edition
of ICGCA. We refer to [19] for an explanation of MITM search and assume that the reader is
familiar with the related terminology.

While DFS search and MITM search are good in similar situations, we noticed that instances
with high average degree can be solved much faster using MITM search, if the length limit is
sufficiently low. Therefore, we incorporated MITM search also into TLDC.

2Maybe the directed version is new but it does not differ significantly.
3We could also use SP (s, v,G \ s).
4This is still supported but untested.
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Our implementation differs in two aspects from Ohba’s. Firstly, we do not use Zobrist hashing,
whereas diodrm does. This is not an intentional choice but due to a lack of time, and hurts our
performance.

Secondly, for MITM search given a path from start to middle diodrm’s implementation in-
crements a counter for each subset of the path. However, this is only necessary for those subsets
that can occur on a path from middle to goal. As a minor optimization we therefore only collect
those vertices v on our path from start s to middle m such that SP (m, v,G)+SP (v, t,G) ≤ ⌈ℓ/2⌉.
All other vertices surely cannot occur on a path from m to t.

3.3 Parameter Approximation

We have two groups of problem parameters that we approximate. Firstly, we have general
parameters that we can exploit independently of the chosen strategy. Secondly, we have solver
specific parameters that we use, on the one hand, to choose the strategy we apply to the problem,
and, on the other hand, sometimes explicitly exploit during the search.

3.3.1 General Parameters

We consider two general parameters.
Firstly, the maximum length ℓ∗ of any path from s to t. This helps us since, if ℓ∗ is less or

equal to ℓ, we do not need to track the lengths of partial paths during the search, which can
introduce a significant overhead. We note that this was not our idea but an optimization of
diodrm [19] that we adopted too.

Since computing or even upper-bounding the maximum length ℓ∗ is hard, our current imple-
mentation uses |V (G)|−1 as an upper-bound for ℓ∗. We investigated different possible strategies
of obtaining better upper-bounds, e.g. using SAT- or MILP-solvers, and a specialized solver [2],
however, even the specialized solver took significantly longer than the search itself took.

Secondly, we noticed that using arbitrary size integers from GMP [8] to store partial results
introduces a significant performance hit compared to using fixed width integers, even though
GMP is highly optimized. Therefore, it is desirable to use fixed width integers instead. However,
we clearly cannot just choose some fixed integer type and expect that the number of paths that
we need to count will be less. Instead, we compute an upper-bound on the number of paths and
choose the smallest integer type that can store the upper-bound. Here, we choose from 64-bit,
128-bit, 256-bit, 512-bit, 1024-bit or arbitrary size GMP integers.

For the upper-bound, we use the following lemmas.

Lemma 3 (Upper-bound Directed). Let (G, s, t, ℓ) be a directed PCS instance, and v1, . . . , vℓ−2 ∈
V (G), the ℓ − 2 vertices with the highest out-degree, in descending order. Then the number of
paths from s to t in G is less or equal to

|N+(s)| · |N−(t)| ·
ℓ−2∑
j=0

j∏
i=1

|N+(vi)|.

Lemma 4 (Upper-bound Directed). Let (G, s, t, ℓ) be an undirected PCS instance, and v1, . . . , vℓ−2 ∈
V (G), the ℓ− 2 vertices with the highest degree, in descending order. Then the number of paths
from s to t in G is less or equal to

|N(s)| · |N(t)| ·
ℓ−2∑
j=0

j∏
i=1

(|N(vi)| − 1).

Proof. ][Proof sketches of Lemmas 3 and 4] The proofs of both lemmas are rather similar. The
basic idea is the following: The first arc is always one from s and the last arc is always one to t,
which is why we multiply by the first two factors.
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Strategy Path-FBS Tree-FBS DFS MITM
Parameters Pathwidth Treewidth, Join-size ℓ− SP (s, t,G), Avg. degree MITM-width

Table 1: Relevant parameters for each strategy

Next, we sum over all remaining path lengths j from 0 to ℓ− 2. To obtain a path from s to t
of length j+2, we then choose j arcs/edges in G one after the other (assuming we already chose
the first and last arc). For each arc/edge, we can choose any outgoing arc from the previous
vertex, or in the case of undirected graph, any edge apart from the one that we previously took.

Since we take j arcs/edges, we make at most j choices. In the worst case, these choices are
made at the vertices with the highest j (out-)degrees.

This provides us with upper-bounds that are good enough to avoid the usage of GMP-integers
in a lot of cases.

3.3.2 Strategy Parameters

For the different strategies, the parameters in Table 1 are relevant. Here, Join-size refers to the
maximal sum of sizes of child bags of a join node in a tree decomposition, and MITM-width is
an approximation of the logarithm of the number of steps MITM search would take on the given
instance.

For each of the (non-trivial) parameters, we describe our way of obtaining an approximation
for them.

Pathwidth For pathwidth, we tried a wide range of approaches, ranging from heuristics in the
literature, over SAT-based approaches, to local improvement strategies. While the SAT-based
approaches were able to provide the best approximations we deemed them too time consuming
for use in ICGCA. Instead, the final implementation uses the heuristic H1 from [10]. More
specifically, if the instance was not solved by preprocessing, we use all available threads each
with a timeout of 15 seconds to compute path decompositions. Each threads generates path
decompositions by repeatedly choosing one of the next vertices recommended by H1 uniformly
at random.

We note that the main benefit of the (weighted) forwarder preprocessing lies here since it
(1) may reduce the pathwidth of the instance and (2) leads to smaller graphs and thus faster
decomposition generation, allowing us to explore more possibilities.

Treewidth Here, a wide range of implementations is available, due to the PACE challenge [4],
which considered the problem of computing treewidth exactly and heuristically. We tested flow-
cutter [21], htd [1], and Tamaki et al.’s solver [22], all with a timeout of 15 seconds. While all
solvers had some benefits and advantages the solver by Tamaki et al. is by far the best for usage
with TLDC. It performs excellently on small instances and is able to provide decompositions,
whose width is often times by two lower than the width of those computed by flow-cutter and htd.
While it failed to produce any decompositions for some of the larger graphs, whereas flow-cutter
and sometimes also htd managed, the corresponding graphs had such large width anyway that a
treewidth based search was doomed to fail miserably anyway.

We therefore use Tamaki et al.’s solver with a timeout of 15 seconds to compute a tree
decomposition, unless the instance was already solved by preprocessing.

We also considered the possibility of using branch decompositions, which can have strictly
smaller widths than the best tree decomposition. For this we tested the implementation of [17],
however, the resulting widths were not better than those obtained for treewidth using Tamaki
et al.’s solver. The code is nevertheless included.
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MITM-width The runtime of MITM search depends (in our experience) mostly on two pa-
rameters: the number of vertices in the paths from the middle to start/goal that need to be
considered, when storing partial results, and the number of paths. These values are hard to
predict, without actually running the algorithm. Therefore, we run MITM search until it finds
one million paths from some middle to the start and compute the average number of vertices that
needed to be consider for storing the partial results. Then, we approximate the percentage of
paths we found after having processed the first million paths. These two values are then combined
to obtain what we call MITM-width. The exact formula can be found in Section 3.4.

We added multiple fail safes to this computation, since sometimes already finding the first
million paths took prohibitively long.

3.4 Portfolio

To combine the different search strategies, we have two main options. Either, we run them in
parallel/sequentially or we choose one strategy and use our whole budget on it. We chose the
latter.

A possible downside of this approach is that we may choose the wrong search strategy for an
instance that could have been solved in seconds using a different strategy. The upside is that if
we were to always choose the correct strategy, we would have around four times the budget to
solve the instance.

Always choosing the correct strategy is too ambitious. Nevertheless, or rather therefore, we
put a lot of effort into finding a way to choose a good strategy based on the parameters computed
in Section 3.3.

To tune our parameters, we used all public instances from this year as well as the PCS
instances from last year.

Our initial idea was to predict, based on the parameters, whether an given instance will finish
using a selected strategy. Consider for this Figure 1. Intuitively, we need a way to separate the
light green circles, which correspond to the instances that we do not solve, from the dark blue
circles, which represent the instances that we easily solve. However, as we can see there is no
smooth color gradient. This means for instances that fall into the areas of green-blue color we
are likely to have many wrong predictions.

Luckily, we do not need to know whether an instances finishes with a selected strategy but
we only need to be able to predict whether a select strategy performs significantly better than
the other strategies. For this, we intuitively want to find parameters ptw, ppw, pdfs, pmitm for
treewidth, pathwidth, DFS and MITM search, respectively, such that a parameter is the lowest
iff the corresponding strategy is the fastest or at least not significantly worse than the fastest
strategy. We build these parameters based on those that we described in the last section.

The precise parameters are as follows:

• ppw = k, where k − 1 is the pathwidth,

• ptw = k + max(k−js,0)/3, where k − 1 is the treewidth and js is the join size,

• pdfs = 1/6(ℓ − SP (s, t,G)) · ∆, where ∆ is the average degree (counting undirected edges
twice),

• pmitm = 39max(ps, 0.1) · (log(106 max(pd, 2 · 10−6)))−1, where ps is the average number of
vertices to cache for paths from s to m, we found, and pd is the estimated ratio of paths
from s tom we found (usually 106) out of all paths from s tom. The maxima avoid errors at
border cases. So if pd = 0.1, we found 10 percent of the paths and need to invest ten times
the effort to find all of them. The logarithm makes it so that the runtime is exponential in
the parameter, as with all the other parameters.
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Figure 1: The average runtime of pathwidth search of instances, denoted by color, grouped by ℓ
(left) or ℓ− SP (s, t,G) (right) and the computed pathwidth upper-bound. Circle size shows the
number of instances in a given group.

For the results, consider Figures 2 to 4. In each figure, we try to find a new parameter
pS such that the instances that can be solved significantly faster with search S than with the
already considered searches S′ have pS < pS′ . The figures show two plots, one for the instances
which are solved faster (by at least 30 seconds) using the previous searches (left) and one for the
instances which are solved faster (by at least 30 seconds) using the current search. The Y-axis
shows the minimum of the old parameters and the X-axes show the parameter we used for the
current search. The blue diagonal denotes where the two are equal. The plots then show the
average runtime benefit of using the search associated with the plot (i.e. right is current, left is
virtual best of the previous) of instances grouped by the parameters on the axes. Intuitively, we
found well-comparable parameters if the instances groups on left plot are below the diagonal and
the instance groups on the right side are on top of the diagonal. Most importantly, this should
be the case for the light green instance groups since these are the ones that have a significant
benefit/deficit w.r.t. some search strategy.

Summarizing, we see that our parameters work very well for DFS and MITM search, with
no instances being misclassified. For pathwidth and treewidth search in Figure 2 we see that
the preferred search is very hard to distinguish. Unfortunately, there some of the instances are
misclassified. However, only for one instance5 this actually means that the search we choose
according to the parameters does not solve the instance, whereas the other one would have.

5Namely the PCS instance “064.col” from last year.
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Figure 2: Average runtime benefit of using treewidth search (left) or pathwidth search (right)
over the other, for instances with a runtime difference of at least 30 seconds.

3.5 General Infrastructure Improvements

Apart from these high level advances, we also incorporated some low level changes that are based
more on engineering rather than scientific insights.

Firstly, we incorporated jemalloc [5, 11]. jemalloc is a scalable concurrent malloc implemen-
tation, meaning it handles multithreaded memory allocations far better than the standard malloc
implementation. We saw confirmation of this. Simply by adding jemalloc our runtime was ap-
proximately halved. This effect is likely not observable when running TLDC in a single thread
or at least likely much less significant.

Secondly, we replaced “std::unordered map” as the underlying data structure that we used
for all caches by the ankerl dense hash map implementation [15]. This also resulted in shorter
runtimes by around 20%. This effect may vary from instance to instance but should also be
observable in the singlethreaded setting.

4 Empirical Evaluation

We provide a short empircal evaluation of the different search strategies, as well as our final
portfolio approach. For this, we use the PCS instances from last year, as well as all instances from
this year, including the later removed instances with one path. We note that we always consider
the multithreaded setting here, with a timeout of 600 seconds, a memory limit of 64GB, and 12
threads. All results need to be taken with a grain of salt since we made some final changes before
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Figure 3: Average runtime benefit of using the best of treewidth search and pathwidth search
(left) or DFS search (right) over the other, for instances with a runtime difference of at least 30
seconds.

benchmarking the portfolio version that were not yet incorporated into the separate searches
before.

The results are in Figure 5. Firstly, we see in the top plot that our solver has significantly
improved compared to last year. While last year TLDC solved 91 instances in the competition,
this year it solves 96 in the portfolio approach and has the potential to solve 97, when using the
virtual best solver. This is mostly due to our improvements to the pathwidth- and treewidth-
based search, which both solve more than 91 instances in their own now.
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Figure 4: Average runtime benefit of using the best of treewidth search, pathwidth search, and
DFS search (left) or MITM search (right) over the other, for instances with a runtime difference
of at least 30 seconds.

5 Conclusion & Discussion

In short, we see that TLDC improved in multiple areas:

• Better and faster preprocessing,

• General engineering advances, based on better multithreaded allocation and cache data
structures,

• General scientific advances, based on different count-types based on an upper-bound on the
solution and the maximum length of a path in the graph,

• Minor search strategy specific ideas, like improved caching mechanisms, reconsideration of
previous optimizations, etc.,

• The addition of MITM search [19] as a search strategy,

• Better heuristics for width parameters, and

• A portfolio that generalizes better.

Overall, we suspect that the better heuristics for pathwidth and treewidth had the largest benefit.
However, also the addition of MITM search was important, since it enabled us to solve four extra
directed instances.
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Figure 5: Number of instances solved by the different searches after a certain time. The bench-
marks include instances with only a single path that have been removed later.
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6 Open Ideas

While TLDC has gotten much faster, there is still a lot of room for improvement. We shortly
list some ideas that we found interesting but did not have time to consider in detail.

• Different hashing, specifically Zobrist hashing as in diodrm [19]. Our current hashing is
specifically good on large chunks of data but except for DFS search, the cache keys are
usually small.

• Better heuristics for path-, tree-, and branchwidth can lead to incredible jumps in perfor-
mance, even if they only decrease the width marginally.

• Exploiting twin vertices for pathwidth search would likely speed up the search both com-
pared to pathwidth search with caching modulo graph isomorphism and normal search, if
the number of twins is large. Additionally, it could likely be incorporated into a portfolio
much more easily than the search module isomorphism.

• Incorporating Reduction 6 properly in the directed setting maybe even based on a dynamic
data structure for the dominators has the potential for much faster DFS search.

• Currently, TLDC does not explicitly exploit strongly connected components in the directed
setting. This years (public) instances did not exhibit any need for such a feature, however,
other instances may be of a different shape.

• Better upper-bounds for the general parameters can lead to faster search without having
to change the search algorithms themselves.

• There is an algorithm for directed path counting [3] that exploits directed pathwidth, which
may be much smaller than undirected pathwidth. While its theoretical runtime upper-
bounds hint at the fact that it will likely be unusable in many cases, there are cases, where
it would likely be worth it to have this algorithm in the portfolio.

Last but not least, we found one interesting fact that we want to mention separately. Namely, the
number of entries in the cache during frontier based search not only depends on the width of the
path-/tree-/branchdecomposition but also on some other indeterminate other things. Specifically,
we noticed while comparing TLDC and diodrm on specific instances that the edge ordering chosen
by diodrm resulted in less cache entries than the one chosen by TLDC, even though the width
of diodrm’s order was higher. Thus, there seems to be more to take into account than only the
width. While we currently have no hints at what this may be, it would be very interesting and
likely highly beneficial to find out.
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