
Effective Preprocessing and Dynamic Programming Algorithms using

Zero-suppressed Binary Decision Diagrams

Keita Maeda∗‡ Ryuma Noma∗ Toshiki Saitoh∗ Takumi Shiota∗†

Shinryu Tachibana∗ Naoya Taguch∗‡ Soma Takao∗

October 16, 2024

1 Introduction

Finding the optimal route from a starting point to a destination is essential in logistics, shuttle services, and
navigation systems. Providing alternative routes that adapt to conditions like traffic jams or road closures is
highly beneficial. Counting the number of routes from a starting point to a destination can be seen as finding
all possible paths in a graph G. However, in transportation networks, the number of paths in the graph G is
typically huge, and computing these paths is a #P-complete problem [Val79]. Therefore, efficient methods are
needed to count these paths. In this paper, we address the following two problems:

Problem 1 (Undirected Graph) Given an undirected graph G = (V,E), a pair of terminals (s, t), and an
integer ℓ, count the number of s− t paths with length at most ℓ.

Problem 2 (Directed Graph) Given a directed graph G = (V,E), a pair of terminals (s, t), and an integer
ℓ, count the number of s− t paths with length at most ℓ.

2 Preliminaries

2.1 Graph

Let G = (V,E) be a graph, where V is a set of vertices. If E = {(u, v) | u, v ∈ V, u ̸= v} is a set of ordered
pairs, then the edges are called directed edges, and G is called a directed graph. If E = {{u, v} | u, v ∈ V, u ̸= v}
is a set of unordered pairs, then the edges are called undirected edges, and G is called an undirected graph. The
graph G is called a weighted graph if a weight function w : E → N assigns a weight to each edge. A path is a
sequence of distinct vertices (v1, . . . , vk) such that, for all i ∈ {1, . . . , k − 1}, either (vi, vi+1) ∈ E (for directed
graphs) or {vi, vi+1} ∈ E (for undirected graphs). The vertices v1 and vk are called the endpoints of the path,
and in both undirected and directed graphs, we call the path a v1 − vk path. For the path P , the sum of
the weights of edges

∑
i∈{1,...,k} w(vi, vi+1) is the length of the path. A path is a Hamiltonian path if it visits

every vertex in G exactly once. A graph is connected if there exists a path between any two vertices in G. A
cycle is a path where the starting vertex and the ending vertex are the same. If a graph is both connected
and acyclic, it is called a tree. A directed acyclic graph (DAG) is a directed graph that contains no cycles. For
an undirected graph, the neighbor set of a vertex vi is defined as N(vi) = {vj | {vi, vj} ∈ E} and the degree
of vi is deg(vi) = |N(vi)|. For a directed graph, the out-neighbor set and the in-neighbor set of a vertex vi is
Nout(vi) = {vj | (vi, vj) ∈ E} and Nin(vi) = {vj | (vj , vi) ∈ E}, respectively. The out-degree and in-degree of a
vertex vi is degout(vi) = |Nout(vi)| and degin(vi) = |Nin(vi)|, respectively. For a subset of vertices W ⊆ V in the
graph G, the graph G[W] = (W, {e ∈ E | e = (p, q) or e = {p, q}, with p, q ∈ W}) is called the subgraph induced
by W . If removing a vertex disconnects the graph, that vertex is called a cut vertex. A biconnected component
is a maximal subgraph that contains no cut vertices. A block-cut tree (BC-tree) is a tree formed by contracting
each biconnected component into a single vertex and connecting these contracted components with cut vertices
in an alternating manner. A directed graph is called strongly connected if, for any two vertices u and v, there
is a path from u to v and a path from v to u. A strongly connected component (SCC) is a maximal subgraph
that is strongly connected. The decomposition of strongly connected components (SCC decomposition) is the
process of partitioning a directed graph into a collection of strongly connected components that do not overlap.
After decomposing the graph into SCCs, contracting each SCC into a single vertex results in a DAG.

∗Kyushu Institute of Technology
†Research Fellow of Japan Society for the Promotion of Science
‡Corresponding author ({taguchi.naoya675, maeda.keita600}@mail.kyutech.jp)

1

⇒

Figure 1: Example of vertex deletion for ℓ = 5. Vertex v0 can be removed because deg(v0) = 1. The path
length through s, v1, v2, · · · , v5, t is 6, exceeding ℓ, so v1 to v5 can be deleted.

2.2 Flow networks

For a directed graph G = (V,E), (G, c, s, t) is a flow network where c : E → R+, s, t ∈ V . A flow from the
source to sink is defined as a function f : E → R+ satisfying the capacity and flow conservation constraints.
For a detailed definition of flow networks, refer to [CLRS09]. The max-flow min-cut theorem states that the
value of the maximum flow in a network is equal to the total capacity of the minimum cut [FF56]. To find the
maximum flow, a common technique is to use a residual network. A residual network represents the remaining
capacity on each edge for additional flow and shows how much additional flow can be sent through the network.
The residual capacity cf (u, v) is defined as follows:

cf (u, v) =

 c(u, v)− f(u, v), if (u, v) ∈ E,
f(v, u), if (v, u) ∈ E,
0, otherwise.

2.3 Zero-suppressed binary decision diagrams

A zero-suppressed binary decision diagram, or ZDD for short, is a data structure for a family of sets. For
a detailed definition of ZDDs, refer to [Knu11]. The important features of a ZDD are that it can compactly
represent a family of sets, and there are many efficient algebraic operations available on these families. After
constructing a ZDD, we can efficiently count the number of objects represented by the ZDD. A ZDD is a directed
acyclic graph consisting of a specific node, called the root node, and two terminal nodes, called the 0-terminal
and 1-terminal, which have no outgoing edges. Each non-terminal node has two outgoing edges, called the
0-edge and 1-edge, with labels assigned to represent elements of the set. Thus, the method of constructing the
ZDD is an important consideration. One approach is a frontier-based search [KIIM17], which constructs the
ZDD directly by sharing and pruning nodes based on a state. Another approach involves repeatedly applying
ZDD operations [Min93].

2.4 Path decompositions

Let G = (V,E) be a graph and P = (X1, X2, . . . , Xr) be a sequence of vertex subsets, called bags, where each
Xi ⊆ V for i ∈ {1, 2, . . . , r}. The sequence P is a path decomposition of G if it satisfies the following three
conditions:

1. Each vertex v ∈ V appears in at least one bag Xi in P .

2. For every edge {u, v} ∈ E, there exists a bag Xi in P that contains both u and v.

3. For every vertex v ∈ V , if v is contained in two bags Xi and Xj with i ≤ j, then v must also be contained
in every bag Xk for all k ∈ {i, . . . , j}.

The pathwidth of a graph G is the minimum of the maximum bag size minus one among all path decompositions
of G.

3 Preprocessing

In a given graph G with terminals s and t, and a positive integer ℓ, edges and vertices that are not contained any
path of length ℓ can be removed, as shown in Figure 1. We propose some preprocessing to remove such vertices
and edges in this section. In Section 3.1, we first describe preprocessing methods based on simple ideas. Next,
in Section 3.2, we present preprocessing methods based on biconnected components decomposition. Finally, in
Section 3.3, we describe preprocessing methods for directed graphs based on flow networks.

2

⇒

Figure 2: Example of vertex contraction. Vertex v6 can be contracted because deg(v6) = 2. The edges connected
to v6 each have a weight of 1, so they are combined into a new edge with a weight of 2.

⇒

Figure 3: An example of vertices that cannot be removed using the method from Section 3.1. The blue vertices
on the left do not contribute to the s− t path counting, so they can be removed (right).

3.1 Simple preprocessing methods

In this section, we describe three preprocessing methods that can be applied to both directed and undirected
graphs.

Method 1 (Removing vertices with degree 1)
If a vertex v (where v ̸= s and v ̸= t) has a degree of 1, v can be removed from G. (This applies to v0 in
Figure 1.)

Method 2 (Removing vertices based on path length)
Let ℓuv be the shortest path length between vertices u(∈ V) and v(∈ V). If v satisfies ℓsv + ℓvt > ℓ,
remove v from G, as any s− t path that includes v will have a length greater than ℓ. (This applies to v1
through v5 in Figure 1.)

Method 3 (Contracting vertices with degree 2)
Let the degree of a vertex v (where v ̸= s and v ̸= t) be 2, and x, y be the neighbors of v. We remove v
and its incident edges and add an edge x, y with weight w(x, v) +w(v, y). (See the example in Figure 2.)

An unweighted graph can be seen as a weighted graph by assigning weights 1 to all edges. Using Method 3, we
consider the graph as a weighted multiple graph.

3.2 Preprocessing using biconnected components decomposition

We here present a preprocessing that removes some vertices of components by extending Method 1. The path
passing through the blue vertices in Figure 3 cannot form an s− t path without passing through vertices v0 and
v1 twice, so these vertices can be removed. In this section, we describe a method based on [MKRS95] to remove
such vertices that do not contribute to the s− t path counting by using the BC-tree. The method is as follows:

Step 1. Apply biconnected component decomposition and construct the BC-tree
Decompose the undirected graph G = (V,E) into biconnected components and construct the BC-tree TB .

Step 2. Identification of biconnected components on the path
In the BC-tree TB , let Bs be the biconnected component containing s, and Bt be the one containing t.
We use Breadth-First Search (BFS) to search for the biconnected components on the path from Bs to Bt

in TB . Each component is denoted as Bi (1 ≤ i ≤ k), where k is the number of components.

Step 3. Identification of vertices that do not contribute to s− t path counting
Each biconnected component contains several vertices. Let VB̄ be the set of vertices in G that are not
part of Bs, Bt, or any of the Bi (1 ≤ i ≤ k). Here, the set of vertices VB̄ does not contribute to the s− t
path counting in G.

Step 4. Deletion of vertices that do not contribute to s− t path counting
Delete the vertices in VB̄ obtained in Step 3 and their adjacent edges from the graph G.

For directed graphs, we can use this preprocessing method by treating the edges as undirected.

3

⇒

Figure 4: An example of biconnected component decomposition (left) and the resulting BC-tree (right). The red
circles represent the cut vertices, and the blue circles represent the biconnected components. The biconnected
component Bs contains s and v0, B1 contains v0 and v1, and Bt contains v1 and t.

⇒

Figure 5: An example of a vertex that cannot be removed using the methods from Sections 3.1 and 3.2. The
red vertex on the left does not contribute to the s− t path counting, so it can be removed.

3.3 Removing non-contributed vertices

We present a preprocessing that removes vertices not contained in any s − t paths for directed graphs. For a
directed graph G, a vertex v is s− t cut vertex if it contains any s− t paths in G, that is, there is no s− t path
if we remove the cut vertex. For a vertex v, there is no v − t paths after removing vertices s − v cut vertices,
the vertex v is non-contributed. This implies that any walk from s to t through the non-contributed vertex v
contains a cut vertex at least twice. Thus, there is no s− t path through v. For example, in Figure 5, there is
no s− t path through the red vertex v3 because there are s− v3 and v3 − t cut vertices v0 and v1. Therefore,
the obtained graph after removing v3 is equivalent.

Here, we describe a method to find all non-contributed vertices in directed graphs G = (V,E) and the vertices
s and t using the flow networks. Let v be a vertex in a directed graph G = (V,E). To check v non-contributed,
we construct the flow network (G, s, v, c), where the function c is a vertex capacity and each vertex capacity is
one. It is well-known that we can compute the maximum flow of a vertex capacity flow network by transforming
an edge capacity flow network and then using Ford-Fulkerson’s algorithm. By computing the maximum flow
on (G, s, v, c), we can find a set of s− v cut-vertices Cs using the residual network. After removing Cs vertices
and their incident edges, we check whether there exists a v − t path in G[V \ Cs].

4 Paths counting algorithms

We propose three algorithms using ZDDs for the path counting problems. The first algorithm is based on the
frontier-based search. The second is a dynamic programming approach for computing Hamiltonian paths. The
third algorithm combines the dynamic programming for strongly connected components (SCC) with the second
algorithm for directed graphs.

4.1 Frontier-based search algorithm

This section presents an algorithm based on frontier-based search, which applies dynamic programming to path
decompositions. To perform frontier-based search efficiently, it is important to find a “good” path decomposition
of the input graph G. However, finding an optimal path decomposition is known to be NP-hard [ACP87]. Inoue
and Minato proposed a heuristic approach using beam search [IM16] to find a “good” path decomposition.
Here, we introduce a method for computing the path decomposition of G by applying this heuristic with a new
evaluation function and adjusting the beam width. Once the path decomposition is obtained, we explain how
to construct a ZDD that represents all s− t paths in G using frontier-based search.

4.1.1 Path decomposition using beam search

To efficiently perform frontier-based search, we consider “good” path decompositions using a new heuristic
approach based on beam search [IM16]. We achieved this through the following process.

4

It is known that a vertex ordering corresponds to a path decomposition [Kin92]. Thus, we can see that the
problem to find a “good” path decomposition is equal to finding a “good” vertex ordering. First, we defined an
evaluation function, eval(π), to measure the efficiency of the frontier-based search for a given vertex ordering
π = (v1, v2, . . . , vn). The time complexity of the frontier-based search is O (

∑n
i=1 f(Fi)), where Fi represents the

size of the frontier at i-th vertex. Since f(Fi) can grow exponentially with the size of the frontier, it is important
to minimize not only the maximum frontier size but also the cumulative size of the frontiers throughout the
search. Thus, we use the following evaluation function:

eval(π) = log

(
n∑

k=1

eFk

)
,

where smaller values of eval(π) indicate more efficient searches. By employing beam search with this evaluation
function, we find an efficient vertex ordering for the path decomposition.

Next, we describe the process of generating a path decomposition from the optimal vertex sequence π
obtained through beam search and our introduced evaluation function. The path decomposition is constructed
as follows:

Step 1. Initialize an empty set S and an empty sequence L.

Step 2. For each vertex vi in π:

1. Add vi to S.

2. Include any vertices vj such that j > i and (vi, vj) ∈ E in S.

3. If new vertices were added, append S to L.

4. Remove vi from S and append the updated S to L.

This process results in a sequence L that represents the path decomposition of the graph.

4.1.2 ZDD constraction for s− t paths

We construct a ZDD representing all s − t paths in G by frontier-based search [KIIM17]. The frontier-based
search constructs a ZDD representing all subgraphs satisfying some conditions in a top-down manner. The
basic idea of our algorithm is the same as that in [KIIM17]. We apply two constraints, degree and connectivity
constraints, to obtain s− t paths. The degree constraint for s− t paths is that both degrees of terminals s and t
are one, and the degrees of the other vertices are zero or two. The connectivity constraint is that the subgraph
is connected. It is well known that any subgraph of G satisfies the two conditions if and only if it is an s − t
path.

To apply these constraints, we employ a subsetting method by TdZdd1 which is a C++ library to construct
a ZDD in a top-down manner. Given a ZDD Z and a constraint C, the subsetting method obtains a new ZDD
by extracting the subgraphs satisfying the condition C from the subgraphs represented by Z. Our algorithm
executes the subsetting four times to adapt the problems with length constraints and to compute the degree
constraint efficiently. We implement the following subsetting steps.

Undirected graph

Step 1. Length constraint: The number of edges is at most ℓ. We only maintain the number of edges as a
state and prune the search if the number of selected edges exceeds ℓ.

Step 2. Relaxation of the degree constraint: The degrees of terminals are odd, and those of the other
vertices are even. We maintain a bit vector as a state for a bag of the path decomposition, and it represents
that the degrees of the vertices in the bag are odd or even. We prune the search if a terminal’s degree is
even or a vertex’s degree except for terminals is odd.

Step 3. Degree constraint: degrees of terminals are one, and those of the other vertices are zero or two. An
integer array represents the degrees of the vertices in a bag. We prune the search if the degree becomes
larger than three.

Step 4. Connectivity constraint: The subgraphs are connected. We maintain a set of paths by a mate
array [KIIM17]. We prune the search if the subgraph contains a cycle.

1https://github.com/kunisura/TdZdd

5

Directed graph

Step 1. Length constraint: This is the same as for undirected graphs.

Step 2. Relaxation of the degree constraint: The sum of the in-degree and out-degree at the terminal
vertices is odd, while for all other vertices, the sum of the in-degree and out-degree is even. The rest is
the same as in the undirected graph.

Step 3. Degree constraint: The in-degree of terminal s is 0 and its out-degree is 1, while the in-degree of
terminal t is 1 and its out-degree is 0. For all other vertices, both the in-degree and out-degree are 1. The
rest is the same as in the undirected graph.

Step 4. Connectivity constraint: This is the same as for undirected graphs.

4.2 Counting Hamiltonian paths using ZDDs

In this section, we explain a dynamic programming algorithm for finding Hamiltonian paths, known as the
algorithm for the traveling salesperson problem. We extend this algorithm to the counting problems and
implement it by ZDDs.

For a given graph G = (V,E), a subset X of vertices includes vertices s and t. We define a function
f(s, t,X) as the number of Hamiltonian paths from s to t in G[X]. The function f(s, t,X) can be computed
by the following recursive formula (for more details, see [MFI+24]):

Undirected graph

f(s, t,X) =



 ∑
v∈N(t),v∈X,
X′=X\{t}

f(s, v,X ′)

+ e(s, t, |X|) s, t ∈ X and |X| > 1

1 s = t

0 Otherwise

where

e(s, t, ℓ) =

{
#{{s, t}, ℓ} {s, t} ∈ E(G) and w({s, t}) = ℓ

0 {s, t} /∈ E(G)

Directed graph

f(s, t,X) =



 ∑
v∈Nin(t),v∈X,

X′=X\{t}

f(s, v,X ′)

+ e(s, t, |X|) s, t ∈ X and |X| > 1

1 s = t

0 Otherwise

where

e(s, t, ℓ) =

{
#{(s, t), ℓ} (s, t) ∈ E(G) and w((s, t)) = ℓ

0 (s, t) /∈ E(G)

Here, we treat an unweighted graph as a weighted graph by assigning a weight of 1 to each edge. A path of
length w can then be contracted into a single edge with weight w. This contraction allows multiple paths with
the same endpoints and the same length ℓ to be represented as a single edge. In the formulas, #{{s, t}, ℓ} and
#{(s, t), ℓ} indicate the number of distinct paths with the same endpoints and the same length.

The total number of s− t paths of length ℓ is given by:∑
s,t∈X, X⊆V and |X|−1≤ℓ

f(s, t,X).

This recursive function works by first extracting sets from the ZDDs that represent s − v paths of length
ℓ− w({v, t}), excluding vertex t. By adding vertex t to these sets, we construct ZDDs that represent the s− t
paths of length ℓ.

6

4.3 Path counting using decomposution of SCCs

In this section, we present an algorithm for directed graphs that combines the decomposition of SCC with
the algorithm described in Section 4.2. This approach uses the structure of SCCs to count s − t paths more
efficiently. The algorithm follows these three steps:

Step 1. Decomposition of SCCs:
First, we perform SCC decomposition on the given directed graph G. In this process, the graph is parti-
tioned into SCCs, where each SCC is a maximal subgraph that is strongly connected. After decomposition,
we contract each SCC into a single vertex, resulting in a DAG. This step is done using depth-first search
(DFS), which takes O(|V |+ |E|) time.

Step 2. Counting paths in each SCC:
For each SCC Ci in the decomposition, we apply the algorithm from Section 4.2 (for directed graph) to
count the number of s − t paths within the SCC. Since each SCC is strongly connected, the paths are
counted independently for each component. The result of this step gives the number of paths between
certain vertices in each SCC.

Step 3. Combining results using dynamic programming:
Once the paths in each SCC are counted, we use dynamic programming (DP) to combine the results.
Since the contracted SCCs form a DAG, we can compute the total number of s − t paths in the original
graph by traversing the DAG. We multiply the number of paths from s to the start vertices of each SCC,
from the start vertices to the end vertices within each SCC, and from the end vertices of each SCC to
t. In the DP approach, paths between different SCCs do not overlap, and the total count is obtained by
summing up the results.

By following these steps, the algorithm efficiently counts s − t paths in directed graphs using the structure
provided by SCC decomposition and dynamic programming.

5 Experiments

In order to ascertain the effectiveness of the preprocessing described in Section 3, as well as the three algorithms
described in Section 4, we apply them to benchmark instances provided by AFSA ICGCA 20242. The public
benchmark includes 50 instances for Problem 1 (undirected graph) and 50 instances for Problem 2 (directed
graph). We denote the algorithms proposed in Section 4.1 as FBS, in Section 4.2 asHAMDP, and in Section 4.3
as SCC. We implement the algorithms in C++ and use the TdZdd1 library for FBS and SAPPOROBDD3 for
HAMDP and SCC. We run the programs on a machine with Linux CentOS 7.9, an Intel Xeon CPU E5-2643
v4 (3.40 GHz, 24 cores), and 256 GB of memory. To match the competition evaluation environment, we set a
timeout of 10 minutes per instance. We apply FBS to both undirected and directed graphs. However, since
SCC consistently performs faster than HAMDP on directed graphs, we use SCC for directed graphs and
HAMDP for undirected graphs in our experiments. For FBS, we compute a path decomposition of the input
graph within 10 seconds.

Table 1 and 2 show the results of preprocessing applied to Problem 1 (undirected graph) and Problem 2
(directed graph), respectively. In the case of undirected graphs, we reduce a large number of vertices and edges
in instances starting with “stanford-Oregon” (see Figure 6) and “stanford-as”. For directed graphs, we reduce
a number of vertices and edges in instances such as “cit-HepPh-30-raw” (see Figure 7) and “p2p-Gnutella24-
10-118-raw”. Additionally, for Problem 2, there are five instances where the algorithm presented in Section 3.3
does not finish within 10 minutes.

Table 3 shows experimental results for Problem 1 (undirected graph). FBS and HAMDP solved 35 and 5
instances from 50 instances, respectively. For undirected graphs, FBS solves instances faster than HAMDP.
Table 4 shows experimental results for Problem 1 (directed graph). FBS and SCC solved 23 and 13 instances
from 50 instances, respectively. Similar to undirected graphs, in most cases, FBS solves instances faster than
SCC. However, for the instance “airlines-migration-airtraffic-airlines-8” (Figure 8), SCC solves the problem
faster than FBS. We consider this is because the pathwidth (PW) is large at 44, while the value of ℓ is small
at 7.

Based on these results, we switch the algorithm depending on the pathwidth and length: for instances with
a pathwidth of 20 or less and a length greater than or equal to 10, we use FBS; otherwise, we use HAMDP
or SCC.

2https://afsa.jp/icgca2024/
3https://github.com/Shin-ichi-Minato/SAPPOROBDD

7

⇒

Figure 6: If we apply preprocessing to the undirected graph stanford-Oregon-1-1085-384 (left), we obtain the
smaller graph (right). The red vertices represent s and t.

References

[ACP87] Stefan Arnborg, Derek G. Corneil, and Andrzej Proskurowski. Complexity of Finding Embeddings
in a k-Tree. SIAM Journal on Algebraic Discrete Methods, 8(2):277–284, 1987.

[CLRS09] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduction to
Algorithms. The MIT Press, 2009.

[FF56] L. R. Ford and D. R. Fulkerson. Maximal flow through a network. Canadian Journal of Mathematics,
8:399–404, 1956.

[IM16] Yuma Inoue and Shin-ichi Minato. Acceleration of zdd construction for subgraph enumeration via
path-width optimization. TCS-TR-A-16-80. Hokkaido University, 2016.

[KIIM17] Jun Kawahara, Takeru Inoue, Hiroaki Iwashita, and Shin-ichi Minato. Frontier-Based Search for
Enumerating All Constrained Subgraphs with Compressed Representation. IEICE Transactions on
Fundamentals of Electronics, Communications and Computer Sciences, 100(9):1773–1784, 2017.

[Kin92] Nancy G. Kinnersley. The vertex separation number of a graph equals its path-width. Information
Processing Letters, 42(6):345–350, 1992.

[Knu11] Donald E Knuth. The Art of Computer Programming, Volume 4A: Combinatorial Algorithms, Part
1. Pearson Education India, 2011.

[MFI+24] Keita Maeda, Yuta Fujioka, Takumi Iwasaki, Takumi Shiota, and Toshiki Saitoh. Divide-and-
Conquer Algorithms for Counting Paths using Zero-Suppressed Binary Decision Diagrams. In Pro-
ceedings of the 24th Korea–Japan Joint Workshop on Algorithms and Computation, 2024.

[Min93] Shin-ichi Minato. Zero-suppressed BDDs for Set Manipulation in Combinatorial Problems. In
Alfred E. Dunlop, editor, Proceedings of the 30th Design Automation Conference. Dallas, Texas,
USA, June 14-18, 1993, pages 272–277. ACM Press, 1993.

[MKRS95] K. Madhukar, D.Pavan Kumar, C.Pandu Rangan, and R. Sundar. Systematic design of an algorithm
for biconnected components. Science of Computer Programming, 25(1):63–77, 1995.

[Val79] Leslie G. Valiant. The Complexity of Enumeration and Reliability Problems. SIAM Journal on
Computing, 8(3):410–421, 1979.

8

⇒

Figure 7: If we apply preprocessing to the directed graph cit-HepPh-30-raw (left), we obtain the smaller graph
(right).

Figure 8: airlines-migration-airtraffic-airlines-8 (after preprocessing)

9

Original Graph Preprocessed graph
|V | |E| |ℓ| |V | |E| |ℓ|

matpower-case145-105 145 422 105 101 376 102
matpower-case145-34 145 422 34 101 376 31
matpower-case1888rte-1420 1888 2308 1420 360 736 778
matpower-case1888rte-154 1888 2308 154 360 736 147
matpower-case1888rte-75 1888 2308 75 360 736 68
matpower-case300-123 300 409 123 124 228 120
matpower-case89pegase-37 89 206 37 49 166 34
matpower-case ACTIVSg200-140 200 245 140 58 103 128
matpower-case ACTIVSg2000-1300 2000 2667 1300 896 1563 1299
matpower-case ACTIVSg2000-901 2000 2667 901 896 1563 900
matpower-case ACTIVSg500-127 500 584 127 96 180 125
matpower-case ACTIVSg500-392 500 584 392 96 180 239
rocketfuel-k o-133 318 758 133 132 572 129
rocketfuel-k o-136 172 381 136 113 320 135
rocketfuel-k o-375 631 2078 375 424 1871 372
rocketfuel-k o-550 960 2821 550 537 2393 548
rocketfuel-k o-735 960 2821 735 537 2393 678
rocketfuel-k o-99 240 404 99 83 245 97
rsndlib–36 100 154 36 57 111 34
rsndlib–62 98 152 62 57 111 61
stanford-Oregon-1-1085-384 1025 1085 384 35 94 82
stanford-Oregon-1-1557-543 1437 1557 543 64 183 166
stanford-Oregon-1-1557-629 1437 1557 629 64 183 166
stanford-Oregon-1-1557-839 1437 1557 839 64 183 166
stanford-as-733-1003-776 916 1003 776 34 97 96
stanford-as-733-1492-1156 1306 1492 1156 57 183 170
stanford-as-733-1492-140 1306 1492 140 57 183 130
stanford-as-733-610-465 580 610 465 14 36 54
stanford-ca-CondMat-423-206 417 423 206 12 18 55
stanford-ca-GrQc-357-132 266 357 132 48 137 72
stanford-ca-GrQc-695-334 496 695 334 81 222 142
stanford-ca-GrQc-695-453 496 695 453 81 222 142
stanford-ca-GrQc-695-483 496 695 483 81 222 142
stanford-ego-Facebook-1166-162 821 1166 162 309 653 155
stanford-ego-Facebook-235-167 203 235 167 42 73 92
stanford-ego-Facebook-235-177 203 235 177 42 73 92
stanford-ego-Facebook-425-131 336 425 131 99 188 128
stanford-ego-Facebook-425-159 336 425 159 99 188 156
stanford-feather-lastfm-social-234-114 227 234 114 10 15 25
stanford-feather-lastfm-social-508-178 450 508 178 55 113 129
stanford-musae-wiki chameleon-245-92 200 245 92 46 91 85
stanford-musae-wiki chameleon-570-325 482 570 325 65 153 157
stanford-musae-wiki crocodile-1311-1200 1221 1311 1200 72 160 225
stanford-musae-wiki crocodile-1311-636 1221 1311 636 72 160 225
stanford-musae-wiki squirrel-1253-485 941 1253 485 254 565 483
stanford-musae-wiki squirrel-759-252 672 759 252 104 191 242
topologyzoo-k o-12 20 26 12 10 16 12
topologyzoo-k o-132 145 186 132 55 94 131
topologyzoo-k o-169 754 895 169 202 341 169
topologyzoo-k o-366 754 895 366 202 341 366

Table 1: Results of preprocessing for Problem 1

10

Original Graph Preprocessed graph
|V | |E| |ℓ| |V | |E| |ℓ|

airlines-migration-airrtraffic-airlines-8 235 2101 8 189 1998 7
cit-HepPh-10-30-raw 3454 22955 30 21 28 21
cit-HepPh-30-raw 10363 139155 120 18 34 18
email-EuAll-10-20-raw 26521 121365 20 6080 72461 16
email-EuAll-30-raw 79564 221146 45 12058 101733 42
matpower-case145-34 145 822 34 130 788 33
matpower-case1888rte-1420 1888 4500 1420 777 2243 777
matpower-case ACTIVSg200-140 200 477 140 127 334 127
north-g.100.0 100 191 25 29 54 22
north-g.12.79 12 26 7 7 13 7
north-g.41.26 41 82 13 8 11 8
north-g.42.5 42 109 16 16 36 12
north-g.55.30 55 130 18 3 3 3
p2p-Gnutella04-10-76-raw 1087 2157 76 138 197 58
p2p-Gnutella04-30-raw 3262 10968 130 1596 4882 113
p2p-Gnutella06-10-200-raw 871 1952 200 73 178 73
p2p-Gnutella06-30-raw 2615 8707 100 1076 3408 92
p2p-Gnutella08-10-54-raw 630 1574 54 72 220 36
p2p-Gnutella08-30-raw 1890 6951 95 771 2998 85
p2p-Gnutella24-10-118-raw 2651 4640 118 99 112 91
p2p-Gnutella24-30-raw 7955 22152 75 3221 9033 70
p2p-Gnutella31-10-92-raw 6258 11759 92 435 681 58
p2p-Gnutella31-30-raw 18775 54012 200 7010 20554 187
rocketfuel-k o-133 318 1478 133 178 1202 130
rocketfuel-k o-735 960 5500 735 679 4943 679
rocketfuel-k o-99 240 787 99 133 571 97
rsndlib–36 100 300 36 88 276 34
soc-Slashdot0811-10-18-raw 7736 261974 18 7247 252994 14
soc-Slashdot0811-100-raw 77360 905468 24 - - -
soc-pokec-relationships-10-raw 163280 2558494 34 - - -
soc-redditHyperlinks-body-10-22-raw 3577 49230 22 2483 43745 18
soc-redditHyperlinks-body-100-raw 35776 137821 26 10253 95414 20
soc-sign-bitcoinalpha-10-16-raw 378 4237 16 334 4111 14
soc-sign-bitcoinalpha-30-raw 1134 13226 14 953 12794 11
stanford-Oregon-1-1085-384 1025 2115 384 82 268 82
stanford-Oregon-1-1557-543 1437 3036 543 166 560 166
stanford-ego-Facebook-235-167 203 458 167 96 249 96
stanford-musae-wiki chameleon-245-92 200 477 92 95 276 87
stanford-musae-wiki crocodile-1311-1200 1221 2556 1200 234 628 234
stanford-musae-wiki squirrel-759-252 672 1480 252 265 690 247
topologyzoo-k o-132 145 362 132 124 314 124
topologyzoo-k o-366 754 1745 366 660 1554 366
twitter combined-10-28-raw 8130 251918 28 7651 243746 27
twitter combined-30-raw 24391 829792 30 23258 807199 27
web-Google-10-100-raw 87571 662997 100 38910 342602 98
web-Google-30-raw 262713 2193922 68 - - -
web-Stanford-10-154-raw 28190 412543 154 12196 195257 151
web-Stanford-100-raw 281903 2312497 488 - - -
wiki-Vote-10-16-raw 711 16955 16 379 8878 14
wiki-Vote-30-raw 2134 68860 12 977 32293 11

Table 2: Results of preprocessing for Problem 2

11

|V | |E| |ℓ| # paths PW FBS [s] HAMDP [s]
matpower-case145-105 101 376 102 3.6× 1036 14 21.02 timeout
matpower-case145-34 101 376 31 1.8× 1021 14 12.4 timeout
matpower-case1888rte-1420 360 736 778 2.0× 1073 15 127.21 timeout
matpower-case1888rte-154 360 736 147 - 15 timeout timeout
matpower-case1888rte-75 360 736 68 6.4× 1018 15 92.65 timeout
matpower-case300-123 124 228 120 1.2× 1021 10 1.8 timeout
matpower-case89pegase-37 49 166 34 8.4× 1015 13 17.88 timeout
matpower-case ACTIVSg200-140 58 103 128 2.1× 1010 9 0.38 timeout
matpower-case ACTIVSg2000-1300 896 1563 1299 - 37 timeout timeout
matpower-case ACTIVSg2000-901 896 1563 900 - 37 timeout timeout
matpower-case ACTIVSg500-127 96 180 125 2.3× 1017 9 1.43 timeout
matpower-case ACTIVSg500-392 96 180 239 6.2× 1017 9 1.04 timeout
rocketfuel-k o-133 132 572 129 3.3× 1034 11 5.44 timeout
rocketfuel-k o-136 113 320 135 6.8× 1034 11 2.77 timeout
rocketfuel-k o-375 424 1871 372 - 36 timeout timeout
rocketfuel-k o-550 537 2393 548 - 48 timeout timeout
rocketfuel-k o-735 537 2393 678 - 48 timeout timeout
rocketfuel-k o-99 83 245 97 2.5× 1024 14 24.71 timeout
rsndlib–36 57 111 34 3.5× 109 15 24.35 timeout
rsndlib–62 57 111 61 2.8× 1012 14 118.66 timeout
stanford-Oregon-1-1085-384 35 94 82 1.9× 109 11 0.50 timeout
stanford-Oregon-1-1557-543 64 183 166 4.0× 1016 15 49.71 timeout
stanford-Oregon-1-1557-629 64 183 166 4.0× 1016 15 49.68 timeout
stanford-Oregon-1-1557-839 64 183 166 4.0× 1016 15 49.76 timeout
stanford-as-733-1003-776 34 97 96 5.3× 108 9 0.16 timeout
stanford-as-733-1492-1156 57 183 170 3.0× 1015 14 31.75 timeout
stanford-as-733-1492-140 57 183 130 3.0× 1015 14 41.07 timeout
stanford-as-733-610-465 14 36 54 1.1× 104 7 0.02 0.05
stanford-ca-CondMat-423-206 12 18 55 4.8× 101 5 0.02 0.02
stanford-ca-GrQc-357-132 48 137 72 - 18 timeout timeout
stanford-ca-GrQc-695-334 81 222 142 - 20 timeout timeout
stanford-ca-GrQc-695-453 81 222 142 - 20 timeout timeout
stanford-ca-GrQc-695-483 81 222 142 - 20 timeout timeout
stanford-ego-Facebook-1166-162 309 653 155 - 34 timeout timeout
stanford-ego-Facebook-235-167 42 73 92 4.7× 107 12 0.31 timeout
stanford-ego-Facebook-235-177 42 73 92 4.7× 107 12 0.29 timeout
stanford-ego-Facebook-425-131 99 188 128 - 18 timeout timeout
stanford-ego-Facebook-425-159 99 188 156 - 18 timeout timeout
stanford-feather-lastfm-social-234-114 10 15 25 4.6× 101 5 0.00 0.00
stanford-feather-lastfm-social-508-178 55 113 129 2.4× 1011 12 0.53 timeout
stanford-musae-wiki chameleon-245-92 46 91 85 7.1× 109 12 0.48 timeout
stanford-musae-wiki chameleon-570-325 65 153 157 6.6× 1013 12 1.15 timeout
stanford-musae-wiki crocodile-1311-1200 72 160 225 3.1× 1016 13 2.09 timeout
stanford-musae-wiki crocodile-1311-636 72 160 225 3.1× 1016 13 2.07 timeout
stanford-musae-wiki squirrel-1253-485 254 565 483 - 54 timeout timeout
stanford-musae-wiki squirrel-759-252 104 191 242 - 19 timeout timeout
topologyzoo-k o-12 10 16 12 3.0× 101 5 0.00 0.01
topologyzoo-k o-132 55 94 131 1.8× 109 7 0.34 372.74
topologyzoo-k o-169 202 341 169 1.6× 1021 9 5.04 timeout
topologyzoo-k o-366 202 341 366 1.1× 1031 9 6.02 timeout

Table 3: Experimental results for Problem 1

12

|V | |E| |ℓ| # paths PW FBS [s] SCC [s]
airlines-migration-airrtraffic-airlines-8 189 1998 7 7.2× 106 44 205.89 12.38
cit-HepPh-10-30-raw 21 28 21 4.5× 101 3 0.01 0.00
cit-HepPh-30-raw 18 34 18 3.6× 102 6 0.08 0.00
email-EuAll-10-20-raw 6080 72461 16 - 1426 timeout timeout
email-EuAll-30-raw 12058 101733 42 - 1805 timeout timeout
matpower-case145-34 130 788 33 6.5× 1020 14 68.92 timeout
matpower-case1888rte-1420 777 2243 777 - 15 timeout timeout
matpower-case ACTIVSg200-140 127 334 127 1.6× 109 9 0.78 timeout
north-g.100.0 29 54 22 9.4× 102 6 0.02 0.00
north-g.12.79 7 13 7 1.3× 101 4 0.00 0.00
north-g.41.26 8 11 8 9.0× 100 3 0.00 0.00
north-g.42.5 16 36 12 1.2× 102 7 0.01 0.00
north-g.55.30 3 3 3 2.0× 100 3 0.01 0.00
p2p-Gnutella04-10-76-raw 138 197 58 5.3× 103 10 0.11 0.01
p2p-Gnutella04-30-raw 1596 4882 113 - 310 timeout timeout
p2p-Gnutella06-10-200-raw 73 178 73 1.9× 107 13 2.19 18.65
p2p-Gnutella06-30-raw 1076 3408 92 - 193 timeout timeout
p2p-Gnutella08-10-54-raw 72 220 36 1.0× 109 18 172.42 timeout
p2p-Gnutella08-30-raw 771 2998 85 - 132 timeout timeout
p2p-Gnutella24-10-118-raw 99 112 91 5.1× 101 5 0.00 0.00
p2p-Gnutella24-30-raw 3221 9033 70 - 975 timeout timeout
p2p-Gnutella31-10-92-raw 435 681 58 - 29 timeout timeout
p2p-Gnutella31-30-raw 7010 20554 187 - 2095 timeout timeout
rocketfuel-k o-133 178 1202 130 2.2× 1033 11 50.28 timeout
rocketfuel-k o-735 679 4943 679 - 47 timeout timeout
rocketfuel-k o-99 133 571 97 2.3× 1023 14 412.52 timeout
rsndlib–36 88 276 34 1.3× 109 15 240.09 timeout
soc-Slashdot0811-10-18-raw 7247 252994 14 - - timeout timeout
soc-Slashdot0811-100-raw - - - - - - -
soc-pokec-relationships-10-raw - - - - - - -
soc-redditHyperlinks-body-10-22-raw 2483 43745 18 - 641 timeout timeout
soc-redditHyperlinks-body-100-raw 10253 95414 20 - - timeout timeout
soc-sign-bitcoinalpha-10-16-raw 334 4111 14 - 78 timeout timeout
soc-sign-bitcoinalpha-30-raw 953 12794 11 - 204 timeout timeout
stanford-Oregon-1-1085-384 82 268 82 3.2× 108 11 4.36 timeout
stanford-Oregon-1-1557-543 166 560 166 - 15 timeout timeout
stanford-ego-Facebook-235-167 96 249 96 1.5× 107 12 7.65 440.87
stanford-musae-wiki chameleon-245-92 95 276 87 2.6× 109 12 6.32 timeout
stanford-musae-wiki crocodile-1311-1200 234 628 234 4.7× 1015 13 55.9 timeout
stanford-musae-wiki squirrel-759-252 265 690 247 - 19 timeout timeout
topologyzoo-k o-132 124 314 124 1.1× 108 7 0.35 13.80
topologyzoo-k o-366 660 1554 366 1.2× 1027 9 16.31 timeout
twitter combined-10-28-raw 7651 243746 27 - - timeout timeout
twitter combined-30-raw 23258 807199 27 - - timeout timeout
web-Google-10-100-raw 38910 342602 98 - - timeout timeout
web-Google-30-raw - - - - - - -
web-Stanford-10-154-raw 12196 195257 151 - - timeout timeout
web-Stanford-100-raw - - - - - - -
wiki-Vote-10-16-raw 379 8878 14 - 145 timeout timeout
wiki-Vote-30-raw 977 32293 11 - 355 timeout timeout

Table 4: Experimental results for Problem 2

13

