
N-stella

Kyosuke Nishizawa1 and Yu Nakahata2

1National Institute of Technology (KOSEN), Nara College
2Nara Institute of Science and Technology

1 Introduction

The length-limited path counting problem is defined as follows.

Input A undirected graph G = (V,E) with vertex set V and edge set E ⊆ V × V , terminals s, t ∈ V , and a
maximum length 0 ≤ l.

Output The number of simple s-t paths in G whose length is at most l.

First, we process the input graph to reduce the graph size. After the edge ordering optimization, we construct a
ZDD (Zero-suppressed Decision Diagram) that represents s-t paths and count the number of them.

2 Reducing Graph Size

To reduce the size of the input graph, we convert the input graph G = (V,E) to a weighted graph G′ = (V ′, E′, w, c).
Each edge e in G′ has two weights: w(e) and c(e). w(e) represents the length of the edge e and c(e) represents the
number of multiple edges represented by e. We consider the input graph G as a weighted graph G′ = (V ′, E′, w, c)
where every edge e ∈ E′ has weights w(e) = 1 and c(e) = 1.

We processed the input graph G′ to reduce its size as follows. Using these algorithms, we could reduce the
number of vertices by 72% and the number of edges by 58% on average.

Length Constraint

First, compute the shortest distance between all vertices v ∈ V ′ and s, t. Then, delete the vertices v ∈ V ′ that
d(s, v) + d(v, t) > l.

Contracting Degree-2 Vertices

We contract the degree-2 vertices except for s, t. Let N(v) be the neighbourhood of v ∈ V ′. If N(v) = {u,w}, we
delete v, e = (u, v), and e′ = (v, w). Then, we add a new edge e′′ = (u,w) whose weights are w(e′′) = w(e) + w(e′)
and c(e′′) = c(e)× c(e′).

Reducing Multiple Edges

When multiple edges exist between u and v and they have the same length, we reduce them to one edge. Specifically,
when e = e′ = {u, v} and w(e) = w(e′), add a new edge e′′ = {u, v} whose weighs are w(e′′) = w(e′) = w(e) and
c(e′′) = c(e′) + c(e).

Block-cut tree

Block-cut tree is a tree of biconnected components. Any connected graph can be decomposed into them. Any
biconnected component that is not on the path from the biconnected component including s to the biconnected
component including t can be deleted. We use Tarjan’s algorithm for constructing block-cut tree.

1



3 Optimizing Edge Ordering

The complexity of the frontier-based search depends on the frontier size. So, optimizing edge ordering is important
to reduce the frontier size and memory consumption. We use Chokudai Search code written by ’Drifters’1, a
contestant in the ICGCA 2023.

4 Constructing ZDD and Counting s-t Paths

We construct a ZDD Z = (N ,A) representing all s-t paths in G′ whose length is at most l using frontier-based
search. After the construction, we count the number of s-t paths by bottom-up dynamic programming as follows.

Each node α ∈ N stores C(α). The values of 0-terminal and 1-terminal are initialized to C(0) = 0, C(1) = 1.
We process the nodes in the reverse topological order (i.e., from the terminals to the root). For each non-terminal
node α ∈ N \ {0, 1} whose label is e ∈ E′, C(α) is computed as follows:

C(α) = C(α0) + C(α1)× c(e),

where α0 and α1 are the 0-child and 1-child of α ∈ N . After the computation, we obtain the answer: C(root).

1https://afsa.jp/icgca2023/files/user02/02.pdf

2


